A Hybrid Ensemble Model Based on ELM and Improved AdaBoost.RT Algorithm for Predicting the Iron Ore Sintering Characters

阿达布思 烧结 计算机科学 极限学习机 能源消耗 算法 一般化 过程(计算) 铁矿石 能量(信号处理) 人工智能 人工神经网络 材料科学 冶金 数学 工程类 支持向量机 统计 数学分析 电气工程 操作系统
作者
Senhui Wang,Haifeng Li,Yongjie Zhang,Zou Zong-shu
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2019: 1-11 被引量:22
标识
DOI:10.1155/2019/4164296
摘要

As energy efficiency becomes increasingly important to the steel industry, the iron ore sintering process is attracting more attention since it consumes the second large amount of energy in the iron and steel making processes. The present work aims to propose a prediction model for the iron ore sintering characters. A hybrid ensemble model combined the extreme learning machine (ELM) with an improved AdaBoost.RT algorithm is developed for regression problem. First, the factors that affect solid fuel consumption, gas fuel consumption, burn-through point (BTP), and tumbler index (TI) are ranked according to the attributes weightiness sequence by applying the RReliefF method. Second, the ELM network is selected as an ensemble predictor due to its fast learning speed and good generalization performance. Third, an improved AdaBoost.RT is established to overcome the limitation of conventional AdaBoost.RT by dynamically self-adjusting the threshold value. Then, an ensemble ELM is employed by using the improved AdaBoost.RT for better precision than individual predictor. Finally, this hybrid ensemble model is applied to predict the iron ore sintering characters by production data from No. 4 sintering machine in Baosteel. The results obtained show that the proposed model is effective and feasible for the practical sintering process. In addition, through analyzing the first superior factors, the energy efficiency and sinter quality could be obviously improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼采梦完成签到,获得积分10
1秒前
1秒前
领导范儿应助PhD采纳,获得10
2秒前
2秒前
Ari_Kun发布了新的文献求助10
3秒前
Orange应助半夏采纳,获得10
4秒前
5秒前
5秒前
充电宝应助Lucky采纳,获得10
6秒前
LLLxy发布了新的文献求助10
6秒前
星辰大海应助流银采纳,获得10
6秒前
鳗鱼听安完成签到,获得积分10
6秒前
科研通AI5应助任磊采纳,获得10
7秒前
8秒前
安静的猴子完成签到 ,获得积分10
9秒前
肖恩发布了新的文献求助10
10秒前
打打应助莫小乖采纳,获得10
10秒前
一诺相许完成签到 ,获得积分10
10秒前
11秒前
哈哈哈完成签到,获得积分10
11秒前
11秒前
科研通AI5应助典雅的俊驰采纳,获得10
12秒前
12秒前
木头完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
14秒前
ingxiaiu完成签到,获得积分10
14秒前
大模型应助郑博文采纳,获得10
14秒前
15秒前
Bella发布了新的文献求助30
16秒前
xuyu发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
yss发布了新的文献求助10
19秒前
顾磊磊完成签到,获得积分10
20秒前
CodeCraft应助lunaxia采纳,获得30
20秒前
小柯完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182224
求助须知:如何正确求助?哪些是违规求助? 4368928
关于积分的说明 13604567
捐赠科研通 4220407
什么是DOI,文献DOI怎么找? 2314709
邀请新用户注册赠送积分活动 1313394
关于科研通互助平台的介绍 1262070