A Hybrid Ensemble Model Based on ELM and Improved AdaBoost.RT Algorithm for Predicting the Iron Ore Sintering Characters

阿达布思 烧结 计算机科学 极限学习机 能源消耗 算法 一般化 过程(计算) 铁矿石 能量(信号处理) 人工智能 人工神经网络 材料科学 冶金 数学 工程类 支持向量机 统计 数学分析 电气工程 操作系统
作者
Senhui Wang,Haifeng Li,Yongjie Zhang,Zou Zong-shu
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2019: 1-11 被引量:22
标识
DOI:10.1155/2019/4164296
摘要

As energy efficiency becomes increasingly important to the steel industry, the iron ore sintering process is attracting more attention since it consumes the second large amount of energy in the iron and steel making processes. The present work aims to propose a prediction model for the iron ore sintering characters. A hybrid ensemble model combined the extreme learning machine (ELM) with an improved AdaBoost.RT algorithm is developed for regression problem. First, the factors that affect solid fuel consumption, gas fuel consumption, burn-through point (BTP), and tumbler index (TI) are ranked according to the attributes weightiness sequence by applying the RReliefF method. Second, the ELM network is selected as an ensemble predictor due to its fast learning speed and good generalization performance. Third, an improved AdaBoost.RT is established to overcome the limitation of conventional AdaBoost.RT by dynamically self-adjusting the threshold value. Then, an ensemble ELM is employed by using the improved AdaBoost.RT for better precision than individual predictor. Finally, this hybrid ensemble model is applied to predict the iron ore sintering characters by production data from No. 4 sintering machine in Baosteel. The results obtained show that the proposed model is effective and feasible for the practical sintering process. In addition, through analyzing the first superior factors, the energy efficiency and sinter quality could be obviously improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RadiantYT发布了新的文献求助10
刚刚
cellulose完成签到,获得积分10
1秒前
小曾应助流白采纳,获得10
1秒前
丘比特应助A2QD采纳,获得10
1秒前
1秒前
xiaoshi完成签到,获得积分10
1秒前
up发布了新的文献求助10
2秒前
2秒前
问雁完成签到,获得积分10
3秒前
wh完成签到,获得积分10
3秒前
苹果摇伽完成签到,获得积分10
3秒前
yuzi发布了新的文献求助10
3秒前
郎梟完成签到,获得积分10
4秒前
脑洞疼应助吉恩采纳,获得10
5秒前
LYSM完成签到,获得积分0
5秒前
螃螃发布了新的文献求助10
6秒前
哈哈完成签到,获得积分10
6秒前
英姑应助yuaasusanaann采纳,获得10
6秒前
敏感的秋凌完成签到 ,获得积分10
6秒前
moon完成签到,获得积分20
6秒前
研友_rLmNXn发布了新的文献求助30
6秒前
JoshuaChen发布了新的文献求助10
7秒前
8秒前
春风不语完成签到 ,获得积分10
8秒前
8秒前
丸子完成签到 ,获得积分10
8秒前
时闲应助ll采纳,获得10
8秒前
js发布了新的文献求助10
9秒前
9秒前
9秒前
思源应助周围采纳,获得10
10秒前
10秒前
Sunny完成签到,获得积分10
11秒前
12秒前
12秒前
wade发布了新的文献求助10
12秒前
12秒前
cdragon完成签到,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650