Boron-Doped Molecules for Optoelectronics

材料科学 兴奋剂 光电子学 纳米技术 分子 化学 有机化学
作者
Soren K. Mellerup,Suning Wang
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (1): 77-89 被引量:178
标识
DOI:10.1016/j.trechm.2019.01.003
摘要

Doping of polycyclic aromatic hydrocarbons (PAHs) with boron atoms is an effective method to fine-tune the optoelectronic properties of π-conjugated materials. B,N-doped PAHs are effective blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). These molecules may ultimately provide a solution for the much sought-after stable and highly efficient pure-blue OLEDs. Organic field-effect transistors with high mobilities can be achieved using B-doped PAHs because the empty pz orbital of boron facilitates charge-carrier transport. Incorporation of B–N units into π-conjugated polymers dramatically alters their HOMO/LUMO energies, making them excellent donor/acceptor materials for organic photovoltaics. The captodative B–N strategy is a promising approach to enhance the diradical character of acenes and achieve new singlet-fission chromophores. Boron-containing π-conjugated systems are an emerging class of materials for important energy-conversion applications. Because of its electron-deficient nature, embedding boron atoms into an organic material introduces electron-accepting centers that impart unique optoelectronic functions and greatly enhance performance in energy-conversion devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). This review covers recent advances in boron-doped molecules for optoelectronics, focusing on their superior performance relative to conventional carbon analogs. Future directions and opportunities for improvement of organoboron-based materials in these areas of research are discussed. Boron-containing π-conjugated systems are an emerging class of materials for important energy-conversion applications. Because of its electron-deficient nature, embedding boron atoms into an organic material introduces electron-accepting centers that impart unique optoelectronic functions and greatly enhance performance in energy-conversion devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). This review covers recent advances in boron-doped molecules for optoelectronics, focusing on their superior performance relative to conventional carbon analogs. Future directions and opportunities for improvement of organoboron-based materials in these areas of research are discussed. the combined action of an electron-withdrawing (captor) and an electron-releasing (donor) substituent on a radical center to improve stabilization. a chromaticity diagram represents the mapping of human color perception as defined by two CIE parameters x and y. an electron acceptor usually contains an empty atomic orbital that can accept electrons such as a three-coordinate boron center or electron-deficient groups like sulfone, phosphine oxide, or electronegative heterocycles (e.g., triazole or aromatic rings decorated with electron-withdrawing groups). an electron donor contains lone electrons (e.g., arylamines) or electron-rich aromatic units (e.g., thiophene) from which an electron can be removed. the ratio of the number of photons emitted externally to the number of electrons injected into a device. the highest-energy molecular orbital containing electrons. a radiationless process involving a transition between two electronic states with different state spin multiplicities (e.g., between the S1 and T1 state). defined as number of photons coming out of a device per number of photons generated within a device. the lowest-energy molecular orbital capable of receiving an electron. a type of photoluminescence. When an electron is promoted from the ground state (S0, with a spin multiplicity of zero) to the excited state by absorbing energy, it may relax back to the ground state by emitting a photon from either a singlet excited state (e.g., S1, in which all electrons are all paired with a spin multiplicity of zero) or a triplet excited state, (e.g., T1, in which there are two non-paired electrons with a spin multiplicity of three). Light emission resulting from a transition from a singlet excited state is fluorescence, whereas that from a triplet excited state is termed phosphorescence. defined as the number of photons emitted per number of absorbed photons. hydrocarbon compounds comprising multiple fused aromatic rings. Common examples are naphthalene, pyrene, and pentacene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sam发布了新的文献求助10
刚刚
1秒前
善学以致用应助阿洁采纳,获得10
2秒前
陈nn发布了新的文献求助10
2秒前
2秒前
2秒前
science发布了新的文献求助10
4秒前
湖湖发布了新的文献求助10
4秒前
sclorry发布了新的文献求助10
4秒前
Jasper应助hyominhsu采纳,获得10
4秒前
商毛毛完成签到,获得积分10
4秒前
5秒前
云云云完成签到,获得积分10
6秒前
费1发布了新的文献求助10
7秒前
共享精神应助笑开口采纳,获得10
7秒前
8秒前
yjwang完成签到,获得积分10
8秒前
9秒前
xiaoshuai应助儒雅的若剑采纳,获得10
9秒前
9秒前
9秒前
sam完成签到,获得积分10
10秒前
行走人生发布了新的文献求助10
10秒前
10秒前
计划完成签到,获得积分10
11秒前
12秒前
小太阳发布了新的文献求助10
13秒前
14秒前
阿洁发布了新的文献求助10
14秒前
可爱的函函应助ljq采纳,获得10
14秒前
赘婿应助杨天天采纳,获得10
14秒前
HCCha发布了新的文献求助10
14秒前
朱佳宁完成签到 ,获得积分10
15秒前
落寞怜雪发布了新的文献求助10
15秒前
在水一方应助费1采纳,获得10
16秒前
上官若男应助花花123采纳,获得10
16秒前
16秒前
SHIRO发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137