Boron-Doped Molecules for Optoelectronics

材料科学 兴奋剂 光电子学 纳米技术 分子 化学 有机化学
作者
Soren K. Mellerup,Suning Wang
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (1): 77-89 被引量:178
标识
DOI:10.1016/j.trechm.2019.01.003
摘要

Doping of polycyclic aromatic hydrocarbons (PAHs) with boron atoms is an effective method to fine-tune the optoelectronic properties of π-conjugated materials. B,N-doped PAHs are effective blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). These molecules may ultimately provide a solution for the much sought-after stable and highly efficient pure-blue OLEDs. Organic field-effect transistors with high mobilities can be achieved using B-doped PAHs because the empty pz orbital of boron facilitates charge-carrier transport. Incorporation of B–N units into π-conjugated polymers dramatically alters their HOMO/LUMO energies, making them excellent donor/acceptor materials for organic photovoltaics. The captodative B–N strategy is a promising approach to enhance the diradical character of acenes and achieve new singlet-fission chromophores. Boron-containing π-conjugated systems are an emerging class of materials for important energy-conversion applications. Because of its electron-deficient nature, embedding boron atoms into an organic material introduces electron-accepting centers that impart unique optoelectronic functions and greatly enhance performance in energy-conversion devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). This review covers recent advances in boron-doped molecules for optoelectronics, focusing on their superior performance relative to conventional carbon analogs. Future directions and opportunities for improvement of organoboron-based materials in these areas of research are discussed. Boron-containing π-conjugated systems are an emerging class of materials for important energy-conversion applications. Because of its electron-deficient nature, embedding boron atoms into an organic material introduces electron-accepting centers that impart unique optoelectronic functions and greatly enhance performance in energy-conversion devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). This review covers recent advances in boron-doped molecules for optoelectronics, focusing on their superior performance relative to conventional carbon analogs. Future directions and opportunities for improvement of organoboron-based materials in these areas of research are discussed. the combined action of an electron-withdrawing (captor) and an electron-releasing (donor) substituent on a radical center to improve stabilization. a chromaticity diagram represents the mapping of human color perception as defined by two CIE parameters x and y. an electron acceptor usually contains an empty atomic orbital that can accept electrons such as a three-coordinate boron center or electron-deficient groups like sulfone, phosphine oxide, or electronegative heterocycles (e.g., triazole or aromatic rings decorated with electron-withdrawing groups). an electron donor contains lone electrons (e.g., arylamines) or electron-rich aromatic units (e.g., thiophene) from which an electron can be removed. the ratio of the number of photons emitted externally to the number of electrons injected into a device. the highest-energy molecular orbital containing electrons. a radiationless process involving a transition between two electronic states with different state spin multiplicities (e.g., between the S1 and T1 state). defined as number of photons coming out of a device per number of photons generated within a device. the lowest-energy molecular orbital capable of receiving an electron. a type of photoluminescence. When an electron is promoted from the ground state (S0, with a spin multiplicity of zero) to the excited state by absorbing energy, it may relax back to the ground state by emitting a photon from either a singlet excited state (e.g., S1, in which all electrons are all paired with a spin multiplicity of zero) or a triplet excited state, (e.g., T1, in which there are two non-paired electrons with a spin multiplicity of three). Light emission resulting from a transition from a singlet excited state is fluorescence, whereas that from a triplet excited state is termed phosphorescence. defined as the number of photons emitted per number of absorbed photons. hydrocarbon compounds comprising multiple fused aromatic rings. Common examples are naphthalene, pyrene, and pentacene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bzg完成签到,获得积分20
1秒前
甜蜜的楷瑞应助王手采纳,获得10
2秒前
糖发人发布了新的文献求助10
2秒前
090完成签到,获得积分10
2秒前
chen发布了新的文献求助10
2秒前
Clyde完成签到,获得积分10
4秒前
4秒前
和谐续完成签到 ,获得积分10
5秒前
大个应助李皓婷采纳,获得10
5秒前
7秒前
chen完成签到,获得积分10
7秒前
Hello应助ylw采纳,获得10
7秒前
8秒前
ChemistryZyh发布了新的文献求助10
8秒前
wensir发布了新的文献求助10
8秒前
端庄千琴完成签到,获得积分10
8秒前
heavennew完成签到,获得积分10
9秒前
10秒前
眼睛大樱桃完成签到,获得积分10
10秒前
Yuantian发布了新的文献求助10
11秒前
学吗你完成签到 ,获得积分10
11秒前
御青白少发布了新的文献求助10
12秒前
无尽夏完成签到,获得积分10
12秒前
Rylee发布了新的文献求助10
14秒前
14秒前
无私的念文完成签到 ,获得积分10
15秒前
充电宝应助Yuantian采纳,获得10
16秒前
水水完成签到,获得积分10
17秒前
sskr发布了新的文献求助10
17秒前
15327432191完成签到 ,获得积分10
18秒前
酷波er应助果汁采纳,获得10
18秒前
善学以致用应助程公子采纳,获得10
18秒前
海阔天空发布了新的文献求助10
18秒前
ChemistryZyh完成签到,获得积分10
19秒前
wensir完成签到,获得积分10
21秒前
斯文败类应助Rylee采纳,获得10
22秒前
养不熟的野猫完成签到,获得积分10
22秒前
sskr完成签到,获得积分10
22秒前
高文强完成签到,获得积分10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048