已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boron-Doped Molecules for Optoelectronics

材料科学 兴奋剂 光电子学 纳米技术 分子 化学 有机化学
作者
Soren K. Mellerup,Suning Wang
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (1): 77-89 被引量:178
标识
DOI:10.1016/j.trechm.2019.01.003
摘要

Doping of polycyclic aromatic hydrocarbons (PAHs) with boron atoms is an effective method to fine-tune the optoelectronic properties of π-conjugated materials. B,N-doped PAHs are effective blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). These molecules may ultimately provide a solution for the much sought-after stable and highly efficient pure-blue OLEDs. Organic field-effect transistors with high mobilities can be achieved using B-doped PAHs because the empty pz orbital of boron facilitates charge-carrier transport. Incorporation of B–N units into π-conjugated polymers dramatically alters their HOMO/LUMO energies, making them excellent donor/acceptor materials for organic photovoltaics. The captodative B–N strategy is a promising approach to enhance the diradical character of acenes and achieve new singlet-fission chromophores. Boron-containing π-conjugated systems are an emerging class of materials for important energy-conversion applications. Because of its electron-deficient nature, embedding boron atoms into an organic material introduces electron-accepting centers that impart unique optoelectronic functions and greatly enhance performance in energy-conversion devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). This review covers recent advances in boron-doped molecules for optoelectronics, focusing on their superior performance relative to conventional carbon analogs. Future directions and opportunities for improvement of organoboron-based materials in these areas of research are discussed. Boron-containing π-conjugated systems are an emerging class of materials for important energy-conversion applications. Because of its electron-deficient nature, embedding boron atoms into an organic material introduces electron-accepting centers that impart unique optoelectronic functions and greatly enhance performance in energy-conversion devices such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs). This review covers recent advances in boron-doped molecules for optoelectronics, focusing on their superior performance relative to conventional carbon analogs. Future directions and opportunities for improvement of organoboron-based materials in these areas of research are discussed. the combined action of an electron-withdrawing (captor) and an electron-releasing (donor) substituent on a radical center to improve stabilization. a chromaticity diagram represents the mapping of human color perception as defined by two CIE parameters x and y. an electron acceptor usually contains an empty atomic orbital that can accept electrons such as a three-coordinate boron center or electron-deficient groups like sulfone, phosphine oxide, or electronegative heterocycles (e.g., triazole or aromatic rings decorated with electron-withdrawing groups). an electron donor contains lone electrons (e.g., arylamines) or electron-rich aromatic units (e.g., thiophene) from which an electron can be removed. the ratio of the number of photons emitted externally to the number of electrons injected into a device. the highest-energy molecular orbital containing electrons. a radiationless process involving a transition between two electronic states with different state spin multiplicities (e.g., between the S1 and T1 state). defined as number of photons coming out of a device per number of photons generated within a device. the lowest-energy molecular orbital capable of receiving an electron. a type of photoluminescence. When an electron is promoted from the ground state (S0, with a spin multiplicity of zero) to the excited state by absorbing energy, it may relax back to the ground state by emitting a photon from either a singlet excited state (e.g., S1, in which all electrons are all paired with a spin multiplicity of zero) or a triplet excited state, (e.g., T1, in which there are two non-paired electrons with a spin multiplicity of three). Light emission resulting from a transition from a singlet excited state is fluorescence, whereas that from a triplet excited state is termed phosphorescence. defined as the number of photons emitted per number of absorbed photons. hydrocarbon compounds comprising multiple fused aromatic rings. Common examples are naphthalene, pyrene, and pentacene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susan完成签到 ,获得积分10
2秒前
龙骑士25完成签到 ,获得积分10
4秒前
arcremnant完成签到,获得积分10
5秒前
11秒前
土豪的灵竹完成签到 ,获得积分10
11秒前
每天都美式完成签到,获得积分10
12秒前
monair完成签到 ,获得积分10
12秒前
13秒前
WangJL完成签到 ,获得积分10
16秒前
我爱康康文献完成签到 ,获得积分10
17秒前
rebekah789完成签到,获得积分10
20秒前
永远少年完成签到,获得积分10
22秒前
26秒前
28秒前
1351567822应助科研达人采纳,获得10
29秒前
叮当拉卡关注了科研通微信公众号
29秒前
lizigongzhu发布了新的文献求助30
33秒前
33秒前
jh完成签到 ,获得积分10
33秒前
追寻的访文完成签到,获得积分10
37秒前
叮当拉卡发布了新的文献求助10
40秒前
Allen完成签到,获得积分10
46秒前
litieniu完成签到 ,获得积分10
1分钟前
暗号完成签到 ,获得积分10
1分钟前
1分钟前
英俊的铭应助呐喊的脚印采纳,获得10
1分钟前
tingting完成签到 ,获得积分10
1分钟前
一卷钢丝球完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助仓鼠球采纳,获得30
1分钟前
小羊咩完成签到 ,获得积分0
1分钟前
漱石枕流完成签到 ,获得积分10
1分钟前
辛夷发布了新的文献求助10
1分钟前
1分钟前
lili完成签到 ,获得积分10
1分钟前
sugarballer完成签到 ,获得积分10
1分钟前
1分钟前
yx_cheng应助lizigongzhu采纳,获得30
1分钟前
彭于晏应助负责的妙松采纳,获得10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990008
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256121
捐赠科研通 3270913
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216