假电容器
材料科学
电容
超级电容器
电极
石墨烯
纳米技术
光电子学
大气温度范围
化学工程
化学
热力学
物理
工程类
物理化学
作者
Jing Kong,Guoping Xiong,Zheng Bo,Xinchao Lu,Kexin Yi,Wenhao Kuang,Shiling Yang,Huachao Yang,Siyu Tian,Jianhua Yan,Kefa Cen
标识
DOI:10.1002/celc.201900601
摘要
Abstract The relatively poor performance stability of pseudocapacitors over a wide temperature window (i. e. temperature stability), particularly at low temperatures, hinders their practical applications. Here, well‐aligned hierarchical pseudocapacitive electrodes are fabricated, featuring run‐through channels in a graphene network (GN) as ion‐buffering reservoirs, open inter‐sheet channels between vertical graphene nanosheets (VGNSs) for fast ion transport and MnO 2 nanopetals on VGNSs for efficient interfacial pseudocapacitive reactions. With reduced ion diffusion length and charge‐transfer resistance as well as improved ion‐transport rate, the capacitance of pseudocapacitive electrodes decreases from 541 to 490 F g −1 at 1 A g −1 as the temperature drops from 25 to 0 °C, revealing a high capacitance retention of 90.7 %. Furthermore, the specific capacitance of a symmetric device based on the hierarchical electrodes at −30 °C maintains 80.8 % of the room‐temperature capacitance. Such outstanding temperature stability is comparable to the state‐of‐the‐art electric double‐layer capacitors. Importantly, 86.0 % of capacitance is retained after repeated heating and cooling at temperatures ranging from −30 to 60 °C for 5000 cycles. Asymmetric supercapacitors with the hierarchical architecture in the positive electrode exhibit stable performance over a wide temperature range. These results demonstrate the rationality of the electrode design for practical energy storage applications in harsh temperature environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI