Microwave induced thermoacoustic tomography based on probabilistic reconstruction

迭代重建 稳健性(进化) 压缩传感 算法 热声学 重建算法 概率逻辑 微波成像 计算机科学 先验概率 后验概率 信号重构 匹配追踪 贝叶斯概率 断层摄影术 先验与后验 Lasso(编程语言) 人工智能 微波食品加热 信号处理 声学 雷达 物理 哲学 万维网 光学 认识论 基因 化学 电信 生物化学
作者
Shuangli Liu,Zhiqin Zhao,Yong Lu,Bingwen Wang,Zaiping Nie,Qing‐Huo Liu
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:112 (26) 被引量:12
标识
DOI:10.1063/1.5034485
摘要

The performance of the existing reconstruction algorithms based on compressive sensing (CS) in microwave induced thermoacoustic tomography (MITAT) is influenced by the positions of detectors. Besides, some a priori information, such as target distribution or the correlation among thermoacoustic signals, has not been taken into account. In this letter, a probabilistic reconstruction algorithm in MITAT based on sparse Bayesian learning is proposed. Different from norm-based point estimation algorithms in CS, the sound pressure distribution which needs to be estimated is provided by probability distributions in the probabilistic reconstruction algorithm and an image is reconstructed based on the posterior density. Compared with the widely used norm-based point estimation algorithms (GPSR, Lasso) whose solution is not always the sparsest, the sparse Bayesian learning framework is globally convergent which can produce the sparsest solution at the posterior mean. Therefore, the robustness of the probabilistic reconstruction is better than that of norm-based point estimation algorithms. In addition, the estimations of the initial pressure distributions can be more accurately provided if the correlation of thermoacoustic signals can be considered, especially under the condition of low signal to noise ratio (SNR). Simulations and experiments on real breast tumors demonstrate that the proposed algorithm improves the robustness of reconstruction and show better performance at low SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻嘻发布了新的文献求助10
刚刚
削皮柚子发布了新的文献求助10
1秒前
俭朴蜜蜂发布了新的文献求助200
2秒前
依夏祭完成签到,获得积分10
3秒前
cc完成签到 ,获得积分10
3秒前
3秒前
天天快乐应助粤十一采纳,获得10
4秒前
YiJin_Wang发布了新的文献求助10
5秒前
乐情发布了新的文献求助20
5秒前
8秒前
wxs发布了新的文献求助10
8秒前
可爱的函函应助酷酷巧蟹采纳,获得10
9秒前
9秒前
blablawindy发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
11秒前
李爱国应助嘿咻采纳,获得10
11秒前
11秒前
11秒前
Steven发布了新的文献求助10
12秒前
12秒前
迟有朝完成签到,获得积分10
14秒前
崔佳慧发布了新的文献求助10
14秒前
粤十一完成签到,获得积分10
15秒前
16秒前
angelinazh完成签到,获得积分10
16秒前
粤十一发布了新的文献求助10
17秒前
17秒前
桐桐应助pura卷卷采纳,获得10
17秒前
18秒前
无花果应助端庄的如花采纳,获得10
19秒前
Hello应助咸鱼咸采纳,获得10
20秒前
张铁柱完成签到,获得积分10
20秒前
天天快乐应助崔佳慧采纳,获得10
20秒前
卢卢完成签到,获得积分10
22秒前
foreverchoi发布了新的文献求助10
22秒前
酷酷巧蟹发布了新的文献求助10
22秒前
22秒前
所所应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206