亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microwave induced thermoacoustic tomography based on probabilistic reconstruction

迭代重建 稳健性(进化) 压缩传感 算法 热声学 重建算法 概率逻辑 微波成像 计算机科学 先验概率 后验概率 信号重构 匹配追踪 贝叶斯概率 断层摄影术 先验与后验 Lasso(编程语言) 人工智能 微波食品加热 信号处理 声学 雷达 物理 哲学 万维网 光学 认识论 基因 化学 电信 生物化学
作者
Shuangli Liu,Zhiqin Zhao,Yong Lu,Bingwen Wang,Zaiping Nie,Qing‐Huo Liu
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:112 (26) 被引量:12
标识
DOI:10.1063/1.5034485
摘要

The performance of the existing reconstruction algorithms based on compressive sensing (CS) in microwave induced thermoacoustic tomography (MITAT) is influenced by the positions of detectors. Besides, some a priori information, such as target distribution or the correlation among thermoacoustic signals, has not been taken into account. In this letter, a probabilistic reconstruction algorithm in MITAT based on sparse Bayesian learning is proposed. Different from norm-based point estimation algorithms in CS, the sound pressure distribution which needs to be estimated is provided by probability distributions in the probabilistic reconstruction algorithm and an image is reconstructed based on the posterior density. Compared with the widely used norm-based point estimation algorithms (GPSR, Lasso) whose solution is not always the sparsest, the sparse Bayesian learning framework is globally convergent which can produce the sparsest solution at the posterior mean. Therefore, the robustness of the probabilistic reconstruction is better than that of norm-based point estimation algorithms. In addition, the estimations of the initial pressure distributions can be more accurately provided if the correlation of thermoacoustic signals can be considered, especially under the condition of low signal to noise ratio (SNR). Simulations and experiments on real breast tumors demonstrate that the proposed algorithm improves the robustness of reconstruction and show better performance at low SNRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mygod完成签到,获得积分10
2秒前
andrele完成签到,获得积分10
6秒前
11秒前
andrele发布了新的文献求助10
16秒前
16秒前
yy发布了新的文献求助10
21秒前
CodeCraft应助南风采纳,获得30
30秒前
37秒前
39秒前
mingjiang完成签到,获得积分10
39秒前
mingjiang发布了新的文献求助10
43秒前
香蕉觅云应助方方采纳,获得10
45秒前
50秒前
方方发布了新的文献求助10
56秒前
小新完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助weirdo采纳,获得10
1分钟前
mm555完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
斯通纳完成签到 ,获得积分10
1分钟前
2分钟前
南风完成签到,获得积分10
2分钟前
南风发布了新的文献求助30
2分钟前
bkagyin应助亠亠采纳,获得10
2分钟前
2分钟前
yyyyyyyyjx发布了新的文献求助10
2分钟前
莫名是个小疯子给小熊的求助进行了留言
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
GingerF应助科研通管家采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116256
求助须知:如何正确求助?哪些是违规求助? 4322964
关于积分的说明 13469749
捐赠科研通 4155188
什么是DOI,文献DOI怎么找? 2277054
邀请新用户注册赠送积分活动 1278911
关于科研通互助平台的介绍 1216914