Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection

计算机科学 模式识别(心理学) 人工智能 还原(数学) 卷积神经网络 结核(地质) 编码 医学影像学 数学 生物 几何学 生物化学 基因 古生物学
作者
Qi Dou,Hao Chen,Lequan Yu,Jing Qin,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:64 (7): 1558-1567 被引量:554
标识
DOI:10.1109/tbme.2016.2613502
摘要

False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates.We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules.The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track.Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data.While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助yyyyyxy采纳,获得10
刚刚
sss312发布了新的文献求助10
1秒前
luoziwuhui完成签到,获得积分10
2秒前
3秒前
无情向薇发布了新的文献求助10
3秒前
yliaoyou完成签到,获得积分10
5秒前
斯文败类应助自觉寄文采纳,获得10
6秒前
zdd发布了新的文献求助10
6秒前
科研通AI5应助杭ge采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助知性的觅露采纳,获得10
8秒前
huizi完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
10秒前
清修完成签到,获得积分10
15秒前
15秒前
momo应助wang采纳,获得10
17秒前
hefang完成签到,获得积分10
18秒前
李李李发布了新的文献求助10
19秒前
chris发布了新的文献求助10
19秒前
思源应助猪猪hero采纳,获得30
19秒前
烟雨江南完成签到,获得积分10
21秒前
SciGPT应助夏铖铄采纳,获得10
24秒前
babe完成签到 ,获得积分10
26秒前
28秒前
28秒前
30秒前
31秒前
chris完成签到,获得积分10
32秒前
猪猪hero发布了新的文献求助30
34秒前
wanci应助LI369258采纳,获得10
35秒前
杭ge发布了新的文献求助10
37秒前
37秒前
夏铖铄发布了新的文献求助10
37秒前
39秒前
倷倷完成签到 ,获得积分10
42秒前
猪猪hero发布了新的文献求助10
42秒前
42秒前
43秒前
英俊的铭应助Tfgghh采纳,获得10
43秒前
Alioth发布了新的文献求助20
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644