胶质瘤
前药
化学
内吞作用
纳米载体
药物输送
细胞毒性
体内
MTT法
离体
药理学
癌症研究
纳米技术
材料科学
体外
生物化学
细胞
医学
生物
生物技术
作者
Yan Jiang,Xiuzhen Wang,Xin Liu,Wei Lv,Hongjuan Zhang,Mingwan Zhang,Xinrui Li,Hongliang Xin,Quan Xu
标识
DOI:10.1021/acsami.6b13805
摘要
Glioblastoma multiforme (GBM) presents one of the most lethal brain tumor with a dismal prognosis. And nanodrug delivery system (nano-DDS) have raised a lot of concern, while the conventional nanoformulations addressed many limitations, especially the low drug loading capacity and poor stability in vivo. Herein, we proposed PTX prodrug (PTX-SS-C18) conjugate self-assembled nanoparticles (PSNPs) functionalized with Pep-1, glioma homing peptide, to overcome the blood brain tumor barrier (BBTB) via interleukin 13 receptor α2 (IL-13Rα2)-mediated endocytosis for targeting GMB. This nanocarrier was with ultrahigh drug loading capacity (56.03%) and redox-sensitivity to the up-expression of glutathione in glioma tumors. And compared with PEG-PSNPs, Pep-PSNPs could significantly enhance cellular uptake in U87MG cells via IL-13Rα2-mediated endocytosis. Enhanced cytotoxicity of Pep-PSNPs against U87MG cells and BCEC cells pretreated with glutathione monoester (GSH-OEt) confirmed that this nanosystem was sensitive to reduction environment, and there was significant difference between targeting and nontargeting groups in MTT assay. Real-time fluorescence image of intracranialU87MG glioma-bearing mice revealed that Pep-PSNPs could more efficiently accumulate at tumor site and improve the penetration. Furthermore, the ex vivo fluorescence imaging and corresponding semiquantitative results displayed that the glioma fluorescence intensity of Pep-PSNPs group was 1.74-fold higher than that of nontargeting group. Pep-PSNPs exhibited remarkable antiglioblastoma efficacy with an extended median survival time. In conclusion, Pep-PSNPs had a promising perspective as a targeting drug delivery system of PTX for glioma treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI