Serum microRNA profiles as diagnostic biomarkers for HBV‐positive hepatocellular carcinoma

肝细胞癌 医学 接收机工作特性 肝硬化 队列 内科学 曲线下面积 逻辑回归 胃肠病学 肿瘤科 核糖核酸 乙型肝炎病毒 生物标志物 病毒学 病毒 生物 基因 生物化学
作者
Hongxia Zhu,Rong Bin Liu,Ya Liang,Abdulbaqi M.E. Hasan,Huiyun Wang,Quanqin Shao,Zi Chen Zhang,Jing Wang,Cai He,Fang Wang,Jian Yong Shao
出处
期刊:Liver International [Wiley]
卷期号:37 (6): 888-896 被引量:44
标识
DOI:10.1111/liv.13356
摘要

Abstract Background & Aims The discovery of effective and reliable biomarkers to detect hepatitis B virus ( HBV )‐positive hepatocellular carcinoma ( HCC ) at an early stage may improve the survival of HCC . The aim of this study was to establish serum micro RNA (mi RNA ) profiles as diagnostic biomarkers for HBV ‐positive HCC . Methods We used deep sequencing to screen serum mi RNA s in a discovery cohort (n=100). Quantitative polymerase chain reaction ( qPCR ) assays were then applied to evaluate the expression of selected mi RNA s. A diagnostic 2‐mi RNA panel was established by a logistic regression model using a training cohort (n=182). The predicted probability of being detected as HCC was used to construct the receiver operating characteristic ( ROC ) curve. Area under the ROC curve ( AUC ) was used to assess the diagnostic performance of the selected mi RNA panel. Results The predicted probability of being detected as HCC by the 2‐mi RNA panel was calculated by: logit P=−2.988 + 1.299 × miR‐27b‐3p + 1.245 × miR‐192‐5p. These results were further confirmed in a validation cohort (n=246).The mi RNA panel provided a high diagnostic accuracy of HCC ( AUC =0.842, P <.0001 for training set; AUC =0.836, P <.0001 for validation set respectively). In addition, the mi RNA panel showed better prediction of HCC diagnosis than did alpha‐foetoprotein ( AFP ). The mi RNA panel also differentiated HCC from healthy ( AUC =0.823, P <.0001), and cirrhosis patients ( AUC =0.859, P <.0001) respectively. Conclusions Differentially expressed serum mi RNA s may have considerable clinical value in HCC diagnosis, and be particularly helpful for AFP ‐negative HCC .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助寒冷天亦采纳,获得10
1秒前
汉堡包应助ooii采纳,获得10
3秒前
刘老板完成签到,获得积分10
3秒前
万能图书馆应助鲸鱼采纳,获得10
3秒前
NZH发布了新的文献求助20
4秒前
酷波er应助33采纳,获得30
4秒前
小白完成签到 ,获得积分10
5秒前
5秒前
SPU7发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
12345678发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
wanci应助季文婷采纳,获得10
13秒前
彧九发布了新的文献求助30
13秒前
13秒前
14秒前
14秒前
14秒前
忐忑的涛发布了新的文献求助10
14秒前
叶子宁发布了新的文献求助10
15秒前
djdsg完成签到,获得积分10
15秒前
xinxin发布了新的文献求助10
16秒前
16秒前
科研通AI6应助尘间雪采纳,获得10
16秒前
桐桐应助snowy_owl采纳,获得30
17秒前
17秒前
18秒前
18秒前
weifeng完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
djdsg发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521661
求助须知:如何正确求助?哪些是违规求助? 4612952
关于积分的说明 14536550
捐赠科研通 4550467
什么是DOI,文献DOI怎么找? 2493708
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446243