Spatial detection of outlier loci with Moran eigenvector maps

生物 异常检测 离群值 地图学 空间分析 特征向量 计算生物学 进化生物学 模式识别(心理学) 统计 人工智能 计算机科学 数学 量子力学 物理 地理
作者
Helene H. Wagner,Mariana Chávez‐Pesqueira,Brenna R. Forester
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:17 (6): 1122-1135 被引量:21
标识
DOI:10.1111/1755-0998.12653
摘要

Abstract The spatial signature of microevolutionary processes structuring genetic variation may play an important role in the detection of loci under selection. However, the spatial location of samples has not yet been used to quantify this. Here, we present a new two‐step method of spatial outlier detection at the individual and deme levels using the power spectrum of Moran eigenvector maps ( MEM ). The MEM power spectrum quantifies how the variation in a variable, such as the frequency of an allele at a SNP locus, is distributed across a range of spatial scales defined by MEM spatial eigenvectors. The first step (Moran spectral outlier detection: MSOD ) uses genetic and spatial information to identify outlier loci by their unusual power spectrum. The second step uses Moran spectral randomization ( MSR ) to test the association between outlier loci and environmental predictors, accounting for spatial autocorrelation. Using simulated data from two published papers, we tested this two‐step method in different scenarios of landscape configuration, selection strength, dispersal capacity and sampling design. Under scenarios that included spatial structure, MSOD alone was sufficient to detect outlier loci at the individual and deme levels without the need for incorporating environmental predictors. Follow‐up with MSR generally reduced (already low) false‐positive rates, though in some cases led to a reduction in power. The results were surprisingly robust to differences in sample size and sampling design. Our method represents a new tool for detecting potential loci under selection with individual‐based and population‐based sampling by leveraging spatial information that has hitherto been neglected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
aa完成签到,获得积分10
3秒前
yoly完成签到,获得积分10
3秒前
David发布了新的文献求助10
3秒前
852应助xinxin采纳,获得10
3秒前
D1504009654完成签到,获得积分10
4秒前
SGY完成签到,获得积分20
5秒前
英俊丹秋发布了新的文献求助10
6秒前
小马甲应助Chrishoper采纳,获得10
6秒前
子车茗应助刘洋采纳,获得10
6秒前
张涛发布了新的文献求助10
7秒前
8秒前
Hello应助北欧海盗采纳,获得10
8秒前
科研通AI2S应助jianjiao采纳,获得10
10秒前
maomao发布了新的文献求助10
11秒前
Jason发布了新的文献求助10
12秒前
13秒前
科目三应助lxy采纳,获得10
13秒前
清寻完成签到 ,获得积分10
14秒前
15秒前
自觉樱桃应助沉静的迎荷采纳,获得10
16秒前
16秒前
17秒前
小马甲应助Ann采纳,获得10
18秒前
18秒前
余未晚应助鹌鹑蛋采纳,获得38
19秒前
北欧海盗完成签到,获得积分10
19秒前
20秒前
忧子忘发布了新的文献求助10
20秒前
rickplug发布了新的文献求助10
21秒前
25秒前
Lynna Lai发布了新的文献求助10
27秒前
27秒前
久念完成签到,获得积分20
28秒前
28秒前
开朗半梅完成签到,获得积分10
30秒前
adazbq完成签到 ,获得积分10
31秒前
久念发布了新的文献求助10
31秒前
31秒前
毛小毛完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068