亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis

激进的 化学 电子转移 光化学 催化作用 反应中间体 光催化 亚胺离子 反应中间体 自由基离子 有机化学 离子 光催化
作者
Kazunari Nakajima,Yoshihiro Miyake,Yoshiaki Nishibayashi
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:49 (9): 1946-1956 被引量:403
标识
DOI:10.1021/acs.accounts.6b00251
摘要

ConspectusSingle electron oxidation of amines provides an efficient way to access synthetically useful α-aminoalkyl radicals as reactive intermediates. After the single electron oxidation of amines, fragmentation of the resulting radical cations proceeds to give the α-aminoalkyl radicals along with generation of a proton. In the synthetic utilization of the α-aminoalkyl radicals, precise control of single electron transfer is essential, because further oxidation of the α-aminoalkyl radicals occurs more easily than the starting amines and the α-aminoalkyl radicals are converted into the corresponding iminium ions. As a result, photoinduced single electron transfer is quite attractive in the synthetic utilization of the α-aminoalkyl radicals.Recently, visible light-photoredox catalysis using transition metal–polypyridyl complexes and other dyes as catalysts has attracted considerable attention, where useful molecular transformations can be achieved through the single electron transfer process between the excited catalysts and substrates. In this context, MacMillan et al. (Science 2011, 334, 1114, DOI: 10.1126/science.1213920) reported an aromatic substitution reaction of cyanoarenes with amines, where α-aminoalkyl radicals work as key reactive intermediates. Pandey and Reiser et al. (Org. Lett. 2012, 14, 672, DOI: 10.1021/ol202857t) and our group (Nishibayashi et al. J. Am. Chem. Soc. 2012, 134, 3338, DOI: 10.1021/ja211770y) independently reported reactions of amines with α,β-unsaturated carbonyl compounds, where addition of α-aminoalkyl radicals to alkenes is a key step. After these earliest examples, nowadays, a variety of transformations using the α-aminoalkyl radicals as reactive intermediates have been reported by many groups.The α-aminoalkyl radicals are usually produced from amines by single electron oxidation and the subsequent deprotonation of the C–H bond adjacent to the nitrogen atom. In addition, the α-aminoalkyl radicals are also produced from α-silylamines and α-amino acids in high efficiency through desilylation or decarboxylation after the single electron oxidation.The generated α-aminoalkyl radicals are utilized in a variety of reaction systems. In fact, reactions based on the addition of α-aminoalkyl radicals to alkenes and other unsaturated bonds have been extensively studied. Aromatic and other types of substitution reactions have also been investigated. Some of these transformations are achieved by combination of photoredox catalysts and other catalysts such as Brønsted and Lewis acids, organocatalysts, and transition metal catalysts. It is also noteworthy that the enantioselective reactions have been accomplished by combination of photoredox catalysts and chiral catalysts.The strategy for the generation of α-aminoalkyl radicals can be applied to utilize other types of alkyl radicals. In the generation of α-aminoalkyl radicals, the bond dissociation of the radical cations occurs at the α-position of amines. In relation to this process, synthetic utilization of other types of alkyl radicals generated by the bond dissociation of the radical cations at a remote position has been also investigated. These alkyl radicals have been applied to molecular transformations in a manner similar to the α-aminoalkyl radicals.Recently, organic synthesis using the α-aminoalkyl radicals and related alkyl radicals has been studied extensively. In this Account, we describe recent advances in photoredox-catalyzed synthetic utilization of these alkyl radicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy发布了新的文献求助10
4秒前
优秀的dd完成签到 ,获得积分10
6秒前
我爱读文献完成签到,获得积分10
7秒前
Cc发布了新的文献求助10
9秒前
9秒前
fei应助wise111采纳,获得10
12秒前
柳行天完成签到 ,获得积分10
12秒前
orixero应助落花生采纳,获得10
13秒前
ycwang完成签到,获得积分10
14秒前
wise111完成签到,获得积分10
15秒前
假茂茂发布了新的文献求助20
16秒前
17秒前
19秒前
21秒前
22秒前
22秒前
美满一曲发布了新的文献求助10
23秒前
25秒前
落花生发布了新的文献求助10
27秒前
luster完成签到 ,获得积分10
36秒前
38秒前
假茂茂完成签到,获得积分10
41秒前
ivy发布了新的文献求助10
45秒前
Garnieta完成签到,获得积分10
46秒前
踏实绮露完成签到 ,获得积分10
47秒前
吴邪发布了新的文献求助10
54秒前
Lucas应助nnn7采纳,获得10
58秒前
swimming完成签到 ,获得积分10
59秒前
诸葛高澜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
嘴角微微仰起笑应助wise111采纳,获得10
1分钟前
1分钟前
1分钟前
Huayan发布了新的文献求助10
1分钟前
check003完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509398
求助须知:如何正确求助?哪些是违规求助? 4604318
关于积分的说明 14489605
捐赠科研通 4539084
什么是DOI,文献DOI怎么找? 2487285
邀请新用户注册赠送积分活动 1469726
关于科研通互助平台的介绍 1441944