Plasma synthesis of photocatalytic TiOxthin films

光催化 薄膜 材料科学 溅射沉积 化学工程 纳米技术 二氧化钛 光电流 半导体 溅射 高功率脉冲磁控溅射 光电子学 化学 复合材料 催化作用 有机化学 工程类
作者
Lucel Sirghi
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
卷期号:25 (3): 033003-033003 被引量:12
标识
DOI:10.1088/0963-0252/25/3/033003
摘要

The development of efficient photocatalytic materials is promising technology for sustainable and green energy production, fabrication of self-cleaning, bactericidal, and super hydrophilic surfaces, CO2 photoreduction, and decomposition of toxic pollutants in air and water. Semiconductors with good photocatalytic activity have been known for four decades and they are regarded as promising candidates for these new technologies. Low-pressure discharge plasma is one of the most versatile technologies being used for the deposition of photocatalytic semiconductor thin films. This article reviews the main results obtained by the author in using low-pressure plasma for synthesis of TiOx thin films with applications in photocatalysis. Titanium dioxide thin films were obtained by radio frequency magnetron sputtering deposition, plasma enhanced chemical vapour deposition, and high power impulse magnetron sputtering deposition. The effects of the plasma deposition method, plasma parameters, film thickness and substrate on the film structure, chemical composition and photocatalytic activity are investigated. The photocatalytic activity of plasma synthesised TiOx thin films was estimated by UV light induced hydrophilicity. Measurements of photocurrent decay in TiOx thin films in vacuum and air showed that the photocatalytic activity is closely connected to the production, recombination and availability for surface reactions of photo-generated charge carriers. The photocatalytic activity of TiOx thin films was investigated at nanoscale by atomic force microscopy. Microscopic regions of different hydrophilicity on UV light irradiated films are discriminated by AFM atomic force microscopy measurements of adhesion and friction force.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助wanna采纳,获得10
1秒前
1秒前
阿燐完成签到,获得积分10
2秒前
我是老大应助卫川影采纳,获得10
2秒前
欢快的芹菜完成签到,获得积分10
3秒前
3秒前
Mr_X发布了新的文献求助10
4秒前
4秒前
LUNAjs发布了新的文献求助30
5秒前
樱花喵应助耍酷天寿采纳,获得10
6秒前
6秒前
kirakira发布了新的文献求助10
7秒前
7秒前
祝君早日毕业完成签到,获得积分10
7秒前
bkagyin应助枫枫829采纳,获得10
7秒前
ghx发布了新的文献求助10
8秒前
优秀的完成签到,获得积分10
8秒前
鼠222发布了新的文献求助10
8秒前
9秒前
zzzy完成签到 ,获得积分10
10秒前
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
欢呼洋葱应助科研通管家采纳,获得10
10秒前
欢呼洋葱应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
毛豆应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
礞石应助曾梦采纳,获得10
11秒前
毛豆应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
毛豆应助科研通管家采纳,获得20
11秒前
11秒前
高木同学发布了新的文献求助10
12秒前
WUHUDASM发布了新的文献求助10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178