Identifying Increased Risk of Readmission and In-hospital Mortality Using Hospital Administrative Data

共病 置信区间 医学 统计的 优势比 协变量 逻辑回归 索引(排版) 可能性 急诊医学 统计 人口学 内科学 万维网 社会学 数学 计算机科学
作者
Brian J. Moore,Susan V. White,Raynard Washington,Natalia Coenen,Anne Elixhauser
出处
期刊:Medical Care [Ovid Technologies (Wolters Kluwer)]
卷期号:55 (7): 698-705 被引量:658
标识
DOI:10.1097/mlr.0000000000000735
摘要

We extend the literature on comorbidity measurement by developing 2 indices, based on the Elixhauser Comorbidity measures, designed to predict 2 frequently reported health outcomes: in-hospital mortality and 30-day readmission in administrative data. The Elixhauser measures are commonly used in research as an adjustment factor to control for severity of illness.We used a large analysis file built from all-payer hospital administrative data in the Healthcare Cost and Utilization Project State Inpatient Databases from 18 states in 2011 and 2012.The final models were derived with bootstrapped replications of backward stepwise logistic regressions on each outcome. Odds ratios and index weights were generated for each Elixhauser comorbidity to create a single index score per record for mortality and readmissions. Model validation was conducted with c-statistics.Our index scores performed as well as using all 29 Elixhauser comorbidity variables separately. The c-statistic for our index scores without inclusion of other covariates was 0.777 (95% confidence interval, 0.776-0.778) for the mortality index and 0.634 (95% confidence interval, 0.633-0.634) for the readmissions index. The indices were stable across multiple subsamples defined by demographic characteristics or clinical condition. The addition of other commonly used covariates (age, sex, expected payer) improved discrimination modestly.These indices are effective methods to incorporate the influence of comorbid conditions in models designed to assess the risk of in-hospital mortality and readmission using administrative data with limited clinical information, especially when small samples sizes are an issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夕完成签到 ,获得积分20
3秒前
3秒前
komorebi发布了新的文献求助10
4秒前
pizwijrit完成签到,获得积分10
4秒前
蜗牛完成签到 ,获得积分10
4秒前
aa完成签到,获得积分10
5秒前
5秒前
jirry完成签到,获得积分10
5秒前
zhw完成签到,获得积分10
6秒前
CipherSage应助甜蜜安筠采纳,获得10
6秒前
FX1688完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
一条蛆完成签到 ,获得积分10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
baileys发布了新的文献求助10
9秒前
10秒前
XIAOSHUAI完成签到,获得积分10
11秒前
11秒前
旦皋发布了新的文献求助10
12秒前
Cris发布了新的文献求助10
12秒前
小二郎应助Yuki采纳,获得10
12秒前
勤恳数据线完成签到,获得积分10
12秒前
就离谱完成签到,获得积分10
13秒前
14秒前
胡不言发布了新的文献求助10
15秒前
17秒前
科目三应助露露采纳,获得10
17秒前
搞怪隶发布了新的文献求助20
18秒前
18秒前
小蘑菇应助沉默诗柳采纳,获得10
19秒前
19秒前
SJJ应助pollen06采纳,获得10
19秒前
21秒前
22秒前
22秒前
tangnan发布了新的文献求助10
22秒前
22秒前
Ray发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736632
求助须知:如何正确求助?哪些是违规求助? 5367001
关于积分的说明 15333469
捐赠科研通 4880391
什么是DOI,文献DOI怎么找? 2622848
邀请新用户注册赠送积分活动 1571730
关于科研通互助平台的介绍 1528573