Identifying Increased Risk of Readmission and In-hospital Mortality Using Hospital Administrative Data

共病 置信区间 医学 统计的 优势比 协变量 逻辑回归 索引(排版) 可能性 急诊医学 统计 人口学 内科学 数学 社会学 万维网 计算机科学
作者
Brian J. Moore,Susan V. White,Raynard Washington,Natalia Coenen,Anne Elixhauser
出处
期刊:Medical Care [Lippincott Williams & Wilkins]
卷期号:55 (7): 698-705 被引量:658
标识
DOI:10.1097/mlr.0000000000000735
摘要

We extend the literature on comorbidity measurement by developing 2 indices, based on the Elixhauser Comorbidity measures, designed to predict 2 frequently reported health outcomes: in-hospital mortality and 30-day readmission in administrative data. The Elixhauser measures are commonly used in research as an adjustment factor to control for severity of illness.We used a large analysis file built from all-payer hospital administrative data in the Healthcare Cost and Utilization Project State Inpatient Databases from 18 states in 2011 and 2012.The final models were derived with bootstrapped replications of backward stepwise logistic regressions on each outcome. Odds ratios and index weights were generated for each Elixhauser comorbidity to create a single index score per record for mortality and readmissions. Model validation was conducted with c-statistics.Our index scores performed as well as using all 29 Elixhauser comorbidity variables separately. The c-statistic for our index scores without inclusion of other covariates was 0.777 (95% confidence interval, 0.776-0.778) for the mortality index and 0.634 (95% confidence interval, 0.633-0.634) for the readmissions index. The indices were stable across multiple subsamples defined by demographic characteristics or clinical condition. The addition of other commonly used covariates (age, sex, expected payer) improved discrimination modestly.These indices are effective methods to incorporate the influence of comorbid conditions in models designed to assess the risk of in-hospital mortality and readmission using administrative data with limited clinical information, especially when small samples sizes are an issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助sundog采纳,获得10
1秒前
NexusExplorer应助乐观伟诚采纳,获得10
1秒前
梦槐发布了新的文献求助30
2秒前
图图烤肉发布了新的文献求助10
2秒前
2秒前
ZMJ困困ZJY发布了新的文献求助10
2秒前
2秒前
KKIII发布了新的文献求助30
2秒前
piggyflying发布了新的文献求助10
3秒前
3秒前
苏久发布了新的文献求助10
4秒前
4秒前
dongdongdongya完成签到,获得积分10
4秒前
哇哈哈哈发布了新的文献求助10
5秒前
白羊完成签到,获得积分10
5秒前
闻尔发布了新的文献求助20
6秒前
6秒前
6秒前
iebix发布了新的文献求助20
7秒前
7秒前
梅哈完成签到 ,获得积分10
7秒前
烟色晚空完成签到,获得积分10
8秒前
小鱼儿发布了新的文献求助10
8秒前
无心的半梅完成签到,获得积分10
9秒前
jassica9发布了新的文献求助10
9秒前
peiter发布了新的文献求助10
10秒前
闫123发布了新的文献求助10
10秒前
顺心的大碗完成签到,获得积分10
10秒前
烟花应助浅听风吟采纳,获得10
10秒前
10秒前
11秒前
luckin发布了新的文献求助10
12秒前
骑猪看月完成签到,获得积分10
12秒前
可爱的函函应助KKIII采纳,获得30
12秒前
13秒前
超级的迎彤完成签到 ,获得积分10
13秒前
佛系发布了新的文献求助10
13秒前
刘卓岩发布了新的文献求助20
15秒前
闻尔完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923