计算机科学
点云
多边形网格
接头(建筑物)
人工智能
点(几何)
语义学(计算机科学)
多样性(控制论)
比例(比率)
RGB颜色模型
情态动词
情报检索
模式识别(心理学)
计算机图形学(图像)
地图学
地理
数学
建筑工程
工程类
化学
几何学
高分子化学
程序设计语言
作者
Iro Armeni,Sasha Sax,Amir Zamir,Silvio Savarese
出处
期刊:Cornell University - arXiv
日期:2017-01-01
被引量:676
标识
DOI:10.48550/arxiv.1702.01105
摘要
We present a dataset of large-scale indoor spaces that provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. The dataset covers over 6,000m2 and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360° equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces. The dataset is available here: http://3Dsemantics.stanford.edu/
科研通智能强力驱动
Strongly Powered by AbleSci AI