弹道
启发式
排名(信息检索)
计算机科学
多样性(控制论)
航程(航空)
数据挖掘
流离失所(心理学)
人工智能
工程类
物理
天文
心理学
心理治疗师
航空航天工程
操作系统
作者
Luke Bermingham,Ickjai Lee
标识
DOI:10.1080/13658816.2017.1290250
摘要
We present an extensible, generic, spatio-temporal trajectory simplification framework that modularises trajectory simplification into the stages of normalising, ranking, and reduction. We combine a range of ranking strategies and scoring heuristics – some from the literature and some new – into our framework modules and create a variety of spatio-temporal trajectory simplification methods. These trajectory simplification methods are experimented upon using real world and synthetic datasets, measuring running time, geometric displacement, and region-of-interest visitation. The results indicate that our proposed framework creates a number of efficient and effective spatio-temporal trajectory simplification methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI