Electrolyte Decomposition on Graphite Anodes in the Presence of Transition Metal Ions

过渡金属 电解质 无机化学 溶解 锂(药物) 氧化物 材料科学 阴极 阳极 电化学 石墨 化学 电极 冶金 催化作用 物理化学 有机化学 内分泌学 医学
作者
Sophie Solchenbach,Gloria Hong,Anna T. S. Freiberg,Roland Jung,Hubert A. Gasteiger
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (3): 219-219
标识
DOI:10.1149/ma2017-01/3/219
摘要

The dissolution of transition metals from cathode active materials is a major aging mechanism in lithium-ion batteries. Manganese dissolution has long been known for lithium manganese oxide spinel cathodes cycled at high voltages or temperatures. 1,2 As layered oxide cathodes, i.e., lithium nickel manganese cobalt oxide (NMC), are cycled to higher cut-off potentials to enhance specific energy and capacity, transition metal dissolution also appears here and becomes significant not only for manganese, but also nickel and cobalt. 3 The detrimental effect of transition metal dissolution does not lie so much in the actual destruction of the cathode active material, but rather in the deposition of transition metal ions on the anode. 4 There, deposited transition metal ions lead to a decrease in capacity, lower coulombic efficiency, and increased impedance. 5,6 The mechanism behind this deterioration is not fully understood and has been a subject of debate in the literature. While many reports indicate that the presence of transition metal ions might be related to an enhanced consumption of electrolyte on the anode, 7,8 previous works mostly focus on the oxidation state or chemical surrounding of transition metals in the SEI. In this study, we use on-line electrochemical mass spectrometry (OEMS) to investigate the electrolyte decomposition reactions associated with transition metals on graphite electrodes. In order to have defined amounts of transition metals in the system, we use model electrolytes containing EC + 1.5 M LiPF 6 and small concentrations of Mn(TFSI) 2 , Co(TFSI) 2 or Ni(TFSI) 2 . As ethylene is the major gaseous product of the reductive decomposition of EC, we can use it as an indicator for the quantitative analysis of electrolyte reduction. In this way, we can compare the extent of electrolyte decomposition during formation in the presence of different transition metal ions (see Figure 1). By using potential resolved OEMS, we determine the potential dependence of electrolyte decomposition and correlate this with the reduction potentials of the transition metal ions. Further, we investigate the effect of transition metal ion concentration per graphite surface area on the extent of electrolyte decomposition. In real lithium-ion cells, however, transition metal dissolution typically occurs during extended cycling, i.e., long after the formation process is completed. Therefore, we investigate the effect of transition metal ions on graphite electrodes that have been pre-formed in transition metal free electrolyte. These electrodes are then transferred into cells containing the same transition metal spiked model electrolytes as before. Here, we also test the effect of different SEI forming additives, namely vinylene carbonate (VC) and fluoroethylene carbonate (FEC), on their ability to suppress electrolyte decomposition induced by transition metal ions, by performing the pre-formation in electrolytes containing VC or FEC. References: Y. Terada, Y. Nishiwaki, I. Nakai, and F. Nishikawa, J. Power Sources, 97-98, 420–422 (2001) D. H. Jang, Y. J. Shin, and S. M. Oh, J. Electrochem. Soc., 143, 2204–2211 (1996) I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, H. A. Gasteiger, J. Electrochem. Soc., 162, A2737–A2746 (2015) H. Tsunekawa, S. Tanimoto, R. Marubayashi, M. Fujita, K. Kifune, M. Sano, J. Electrochem. Soc., 149, A1326–A1331 (2002) Y. Domi, T. Doi, M. Ochida, T. Yamanaka, and T. Abe, J. Electrochem. Soc., 163, 2849–2853 (2016) S. Komaba, N. Kumagai, and Y. Kataoka, Electrochim. Acta, 47, 1229–1239 (2002) J. Wandt, A. Freiberg, R. Thomas, Y. Gorlin, A. Siebel, R. Jung, H. A. Gasteiger, M. Tromp, J. Mater. Chem. A, 4, 18300-18305 (2016) C. Delacourt, A. Kwong, X. Liu, R. Qiao, W. L. Yang, P. Lu, S. J. Harris, V. Srinivasan, J. Electrochem. Soc., 160, A1099–A1107 (2013) M. Metzger, B. Strehle, S. Solchenbach, and H. A. Gasteiger, J. Electrochem. Soc., 163, A798–A809 (2016) Acknowledgements: This work is financially supported by the BASF SE Battery Research Network. Funding for R. J. was provided by BMW AG. Figure 1: Ethylene evolution during the first (solid bars) and the second (dashed bars) cycle measured by OEMS during potentiodynamic formation (2 CVs between 0.1 and 2 V vs. Li/Li + at 0.2 mV/s) of a graphite electrode (95% graphite, 5% PVDF) in an EC / 1.5 M LiPF 6 electrolyte containing no transition metal ions, 10 mM Co(TFSI) 2 , 10 mM Ni(TFSI) 2 , or 10 mM Mn(TFSI) 2 . To avoid any deposition on the lithium counter electrode, the experiments were performed in a sealed 2-compartment 9 cell. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Endless采纳,获得10
刚刚
1秒前
浪子发布了新的文献求助10
2秒前
斯文败类应助汪澳采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
西瓜完成签到,获得积分10
3秒前
3秒前
江江好完成签到,获得积分10
3秒前
MCQ发布了新的文献求助10
4秒前
4秒前
盲点发布了新的文献求助10
4秒前
4秒前
AAAAa发布了新的文献求助10
5秒前
正直无极完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
好久不见应助无言采纳,获得10
6秒前
麦地娜发布了新的文献求助10
6秒前
文耳东完成签到,获得积分10
6秒前
7秒前
乐观小之发布了新的文献求助10
7秒前
江江好发布了新的文献求助10
7秒前
Owen应助gan采纳,获得10
7秒前
阿司匹林完成签到,获得积分10
7秒前
7秒前
FIREWORK发布了新的文献求助10
8秒前
Jasper应助wuqi采纳,获得10
8秒前
shu发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
MCQ完成签到,获得积分10
10秒前
浮游应助小太阳采纳,获得10
10秒前
Endless发布了新的文献求助10
10秒前
皮代谷完成签到,获得积分10
10秒前
充电宝应助芝士就是力量采纳,获得10
11秒前
11秒前
ethereal发布了新的文献求助10
11秒前
花粉过敏发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049