Electrolyte Decomposition on Graphite Anodes in the Presence of Transition Metal Ions

过渡金属 电解质 无机化学 溶解 锂(药物) 氧化物 材料科学 阴极 阳极 电化学 石墨 化学 电极 冶金 催化作用 物理化学 有机化学 内分泌学 医学
作者
Sophie Solchenbach,Gloria Hong,Anna T. S. Freiberg,Roland Jung,Hubert A. Gasteiger
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (3): 219-219
标识
DOI:10.1149/ma2017-01/3/219
摘要

The dissolution of transition metals from cathode active materials is a major aging mechanism in lithium-ion batteries. Manganese dissolution has long been known for lithium manganese oxide spinel cathodes cycled at high voltages or temperatures. 1,2 As layered oxide cathodes, i.e., lithium nickel manganese cobalt oxide (NMC), are cycled to higher cut-off potentials to enhance specific energy and capacity, transition metal dissolution also appears here and becomes significant not only for manganese, but also nickel and cobalt. 3 The detrimental effect of transition metal dissolution does not lie so much in the actual destruction of the cathode active material, but rather in the deposition of transition metal ions on the anode. 4 There, deposited transition metal ions lead to a decrease in capacity, lower coulombic efficiency, and increased impedance. 5,6 The mechanism behind this deterioration is not fully understood and has been a subject of debate in the literature. While many reports indicate that the presence of transition metal ions might be related to an enhanced consumption of electrolyte on the anode, 7,8 previous works mostly focus on the oxidation state or chemical surrounding of transition metals in the SEI. In this study, we use on-line electrochemical mass spectrometry (OEMS) to investigate the electrolyte decomposition reactions associated with transition metals on graphite electrodes. In order to have defined amounts of transition metals in the system, we use model electrolytes containing EC + 1.5 M LiPF 6 and small concentrations of Mn(TFSI) 2 , Co(TFSI) 2 or Ni(TFSI) 2 . As ethylene is the major gaseous product of the reductive decomposition of EC, we can use it as an indicator for the quantitative analysis of electrolyte reduction. In this way, we can compare the extent of electrolyte decomposition during formation in the presence of different transition metal ions (see Figure 1). By using potential resolved OEMS, we determine the potential dependence of electrolyte decomposition and correlate this with the reduction potentials of the transition metal ions. Further, we investigate the effect of transition metal ion concentration per graphite surface area on the extent of electrolyte decomposition. In real lithium-ion cells, however, transition metal dissolution typically occurs during extended cycling, i.e., long after the formation process is completed. Therefore, we investigate the effect of transition metal ions on graphite electrodes that have been pre-formed in transition metal free electrolyte. These electrodes are then transferred into cells containing the same transition metal spiked model electrolytes as before. Here, we also test the effect of different SEI forming additives, namely vinylene carbonate (VC) and fluoroethylene carbonate (FEC), on their ability to suppress electrolyte decomposition induced by transition metal ions, by performing the pre-formation in electrolytes containing VC or FEC. References: Y. Terada, Y. Nishiwaki, I. Nakai, and F. Nishikawa, J. Power Sources, 97-98, 420–422 (2001) D. H. Jang, Y. J. Shin, and S. M. Oh, J. Electrochem. Soc., 143, 2204–2211 (1996) I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, H. A. Gasteiger, J. Electrochem. Soc., 162, A2737–A2746 (2015) H. Tsunekawa, S. Tanimoto, R. Marubayashi, M. Fujita, K. Kifune, M. Sano, J. Electrochem. Soc., 149, A1326–A1331 (2002) Y. Domi, T. Doi, M. Ochida, T. Yamanaka, and T. Abe, J. Electrochem. Soc., 163, 2849–2853 (2016) S. Komaba, N. Kumagai, and Y. Kataoka, Electrochim. Acta, 47, 1229–1239 (2002) J. Wandt, A. Freiberg, R. Thomas, Y. Gorlin, A. Siebel, R. Jung, H. A. Gasteiger, M. Tromp, J. Mater. Chem. A, 4, 18300-18305 (2016) C. Delacourt, A. Kwong, X. Liu, R. Qiao, W. L. Yang, P. Lu, S. J. Harris, V. Srinivasan, J. Electrochem. Soc., 160, A1099–A1107 (2013) M. Metzger, B. Strehle, S. Solchenbach, and H. A. Gasteiger, J. Electrochem. Soc., 163, A798–A809 (2016) Acknowledgements: This work is financially supported by the BASF SE Battery Research Network. Funding for R. J. was provided by BMW AG. Figure 1: Ethylene evolution during the first (solid bars) and the second (dashed bars) cycle measured by OEMS during potentiodynamic formation (2 CVs between 0.1 and 2 V vs. Li/Li + at 0.2 mV/s) of a graphite electrode (95% graphite, 5% PVDF) in an EC / 1.5 M LiPF 6 electrolyte containing no transition metal ions, 10 mM Co(TFSI) 2 , 10 mM Ni(TFSI) 2 , or 10 mM Mn(TFSI) 2 . To avoid any deposition on the lithium counter electrode, the experiments were performed in a sealed 2-compartment 9 cell. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想看文献完成签到 ,获得积分10
1秒前
刘哔发布了新的文献求助10
1秒前
善学以致用应助Lynne采纳,获得10
2秒前
收醉人发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
顷梦完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
djbj2022发布了新的文献求助10
8秒前
WN发布了新的文献求助10
8秒前
messyknots完成签到,获得积分10
9秒前
刘哔完成签到,获得积分10
9秒前
9秒前
烂漫忆山关注了科研通微信公众号
9秒前
熊猫完成签到 ,获得积分10
10秒前
深情安青应助王小红采纳,获得10
10秒前
pluto应助文文采纳,获得10
10秒前
shiqiang mu应助11采纳,获得10
13秒前
斯文败类应助11采纳,获得10
13秒前
13秒前
13秒前
lanlan完成签到 ,获得积分10
14秒前
15秒前
15秒前
鹏笑发布了新的文献求助10
17秒前
18秒前
22年春_完成签到,获得积分10
19秒前
19秒前
20秒前
自觉冰之完成签到,获得积分10
20秒前
康康小白杨完成签到 ,获得积分10
20秒前
21秒前
冷酷听枫发布了新的文献求助10
21秒前
Gavin完成签到,获得积分10
21秒前
21秒前
淡然冬灵应助豆杀包采纳,获得30
22秒前
22秒前
花花123发布了新的文献求助10
24秒前
anna1992发布了新的文献求助10
24秒前
liu发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425233
求助须知:如何正确求助?哪些是违规求助? 4539321
关于积分的说明 14166837
捐赠科研通 4456547
什么是DOI,文献DOI怎么找? 2444245
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412581