清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recent and future developments in earthquake ground motion estimation

地震灾害 危害 参数统计 地震动 不确定度量化 航程(航空) 计算机科学 概率逻辑 地质学 地震学 计量经济学 统计 数学 工程类 人工智能 机器学习 航空航天工程 有机化学 化学
作者
John Douglas,Benjamin Edwards
出处
期刊:Earth-Science Reviews [Elsevier]
卷期号:160: 203-219 被引量:187
标识
DOI:10.1016/j.earscirev.2016.07.005
摘要

Seismic hazard analyses (SHA) are routinely carried out around the world to understand the hazard, and consequently the risk, posed by earthquake activity. Whether single scenario, deterministic analyses, or state-of-the art probabilistic approaches, considering all possible events, a founding pillar of SHA is the estimation of the ground-shaking field from potential future earthquakes. Early models accounted for simple observations, such that ground shaking from larger earthquakes is stronger and that ground motion tends to attenuate rapidly away from the earthquake source. The first ground motion prediction equations (GMPEs) were, therefore, developed with as few as two principal predictor variables: magnitude and distance. Despite the significant growth of computer power over the last few decades, and with it the possibility to compute kinematic or dynamic rupture models coupled with simulations of 3D wave propagation, the simple parametric GMPE has remained the tool of choice for hazard analysts. There are numerous reasons for this. First and foremost GMPEs are robust and reliable within the model space considered during their derivation, and many can be extrapolated to a degree beyond this space with some confidence. With ever expanding datasets and improved metadata the models are becoming more and more useful: a range of predictor variables are now used, describing the source, path and site effects in detail. GMPEs are also relatively easy to implement and computationally inexpensive. Despite this, probabilistic hazard calculations using GMPEs and accounting for uncertainties can still take several days to run. Full simulation-based approaches, therefore, clearly lie outside the computation budget afforded to most projects. As well as the ever expanding list of predictor variables, other recent developments have also significantly improved the predictive power of GMPEs. This has allowed them to maintain their advantage over more ‘physical’ simulation techniques. Possibly the biggest aspect of this is not related to the median ground-shaking field, but rather its variability (and correlation in space and with oscillator period). This is a major advantage of empirical as opposed to simulation approaches, which typically struggle to replicate the covariance of input variables and, consequently, the variance of the ground motion. In this article we summarize some of the recent advances in ground motion prediction equations, including their application in SHA. We begin with a summary of the current state-of-the-art, then introduce the main additional predictor variables now used. Region- and event-type (tectonic or induced) specific predictions and adjustments are then discussed. Additional topics include advances in estimating ground-motion variability (epistemic and aleatory) and expanding GMPEs to predict other intensity measures or waveform features. The article concludes with a discussion on the path forward in earthquake ground motion prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夜临完成签到,获得积分0
20秒前
跳跃的鹏飞完成签到 ,获得积分0
26秒前
海英完成签到,获得积分10
31秒前
luobote完成签到 ,获得积分10
38秒前
吕佳完成签到 ,获得积分10
39秒前
限量版小祸害完成签到 ,获得积分10
42秒前
qiqi完成签到,获得积分10
44秒前
45秒前
我是老大应助Joy采纳,获得10
49秒前
qiqiqiqiqi完成签到 ,获得积分10
49秒前
Singularity完成签到,获得积分0
50秒前
早睡早起身体好Q完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
李志全完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xgx984完成签到,获得积分10
1分钟前
共享精神应助keke采纳,获得10
1分钟前
Nene完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
大模型应助Zhuyin采纳,获得10
1分钟前
1分钟前
MoodMeed完成签到,获得积分10
1分钟前
1分钟前
Joy发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
2分钟前
mengqing发布了新的文献求助10
2分钟前
2分钟前
coding完成签到,获得积分10
2分钟前
Lucas应助积极香菜采纳,获得10
2分钟前
玺青一生完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
呼延坤完成签到 ,获得积分10
2分钟前
阿泽发布了新的文献求助10
2分钟前
非我完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310