The predictive value of cardiac biomarkers in prognosis and risk stratification of patients with atrial fibrillation

心房颤动 医学 亚临床感染 无症状的 心脏病学 内科学 疾病 人口 重症监护医学 入射(几何) 环境卫生 物理 光学
作者
Jasper J. Brugts,Şakir Akın,Anne-Mijntje Helming,Simone Loonstra,Ewout J. van den Bos,Marcel J.M. Kofflard
出处
期刊:Current Opinion in Cardiology [Ovid Technologies (Wolters Kluwer)]
卷期号:26 (5): 449-456 被引量:21
标识
DOI:10.1097/hco.0b013e3283499ed3
摘要

Atrial fibrillation is a significant public health issue considering its high prevalence in the general population, and is associated with an increased risk of cardiovascular mortality and morbidity and thrombo-embolic complications.Asymptomatic paroxysms of atrial fibrillation occur frequently in the first stages of the disease but patients present to the doctor at a relatively late stage when the associated complications have already taken place. It is crucial to identify such patients as early as possible in order to start preventive therapy. Clinical diagnostic tests to identify patients prone to atrial fibrillation complications have not yet been developed as the exact mechanism and substrate of subclinical atrial fibrillation are not known. Further research is necessary to understand the pathophysiology of subclinical atrial fibrillation and to identify potential risk markers that determine the development and prognosis of the disease.Biomarkers have recently been identified which have been shown to be related to the incidence of atrial fibrillation and its prognosis. They reflect inflammation, neurohumoral activation and subclinical heart damage.New biomarkers may help to understand the mechanisms of subclinical atrial fibrillation and signal the likelihood of disease progression. Such biomarkers, though subject to further validation, may be of value in predicting the prognosis and guiding the treatment of patients with atrial fibrillation. They may enhance the ability of risk scores to guide anticoagulant treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QianQianONE完成签到,获得积分10
1秒前
刘奇发布了新的社区帖子
1秒前
穆思柔发布了新的文献求助10
1秒前
呼初南完成签到 ,获得积分20
1秒前
科研通AI6应助风中睫毛膏采纳,获得10
1秒前
自由天抒完成签到,获得积分10
2秒前
科研通AI6应助多多采纳,获得10
3秒前
3秒前
Lei发布了新的文献求助10
4秒前
大胆的向日葵完成签到,获得积分10
4秒前
Younes发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
碧蓝老黑完成签到,获得积分10
4秒前
炎燚发布了新的文献求助10
5秒前
5秒前
浮游应助魔音甜菜采纳,获得10
7秒前
科研通AI6应助满_1999采纳,获得10
8秒前
8秒前
10秒前
Ava应助fafafa采纳,获得10
11秒前
12秒前
科研通AI6应助alex采纳,获得10
13秒前
李健的小迷弟应助炎燚采纳,获得10
14秒前
闪闪的雨柏完成签到,获得积分10
15秒前
科研通AI6应助shengsheng采纳,获得10
16秒前
16秒前
科研通AI2S应助weixin112233采纳,获得10
16秒前
酷波er应助May采纳,获得10
16秒前
17秒前
17秒前
爱吃米线发布了新的文献求助10
17秒前
郑浩龙完成签到,获得积分10
17秒前
17秒前
Jane_Xin发布了新的文献求助10
18秒前
79完成签到,获得积分10
19秒前
ll完成签到,获得积分10
19秒前
19秒前
小卡拉米应助黎明采纳,获得10
19秒前
XiaoYuuu完成签到,获得积分10
19秒前
FashionBoy应助喂喂喂采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524