Synthesis of Formate from CO2 Gas Catalyzed by an O2-Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase

甲酸脱氢酶 格式化 NAD+激酶 化学 催化作用 脱氢酶 一氧化碳脱氢酶 生物化学 醇脱氢酶 一氧化碳
作者
Xuejun Yu,Dimitri Niks,Xin Ge,Haizhou Liu,Russ Hille,Ashok Mulchandani
出处
期刊:Biochemistry [American Chemical Society]
卷期号:58 (14): 1861-1868 被引量:36
标识
DOI:10.1021/acs.biochem.8b01301
摘要

Direct biocatalytic conversion of CO2 to formic acid is an attractive means of reversibly storing energy in chemical bonds. Formate dehydrogenases (FDHs) are a heterogeneous group of enzymes that catalyze the oxidation of formic acid to carbon dioxide, generating two protons and two electrons. Several FDHs have recently been reported to catalyze the reverse reaction, i.e., the reduction of carbon dioxide to formic acid, under appropriate conditions. The main challenges with these enzymes are relatively low rates of CO2 reduction and high oxygen sensitivity. Our earlier studies (Yu et al. (2017) J. Biol. Chem. 292, 16872-16879) have shown that the FdsABG formate dehydrogenase from Cupriavidus necator is able to effectively catalyze the reduction of CO2, using NADH as a source of reducing equivalents, with a good oxygen tolerance. On the basis of this result, we have developed a highly thermodynamically efficient and cost-effective biocatalytic process for the transformation of CO2 to formic acid using FdsABG. We have cloned the full-length soluble formate dehydrogenase (FdsABG) from C. necator and expressed it in Escherichia coli with a His-tag fused to the N terminus of the FdsG subunit; this overexpression system has greatly simplified the FdsABG purification process. Importantly, we have also combined this recombinant C. necator FdsABG with another enzyme, glucose dehydrogenase, for continuous regeneration of NADH for CO2 reduction and demonstrated that the combined system is highly effective in reducing CO2 to formate. The results indicate that this system shows significant promise for the future development of an enzyme-based system for the industrial reduction of CO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昨夜星辰完成签到,获得积分10
刚刚
1秒前
木子木木夕完成签到 ,获得积分10
4秒前
Gavin发布了新的文献求助10
5秒前
5秒前
Garrett完成签到 ,获得积分10
5秒前
莲书关注了科研通微信公众号
6秒前
6秒前
超级纸飞机完成签到 ,获得积分10
7秒前
犊子发布了新的文献求助10
8秒前
JamesPei应助Charming采纳,获得10
9秒前
10秒前
无异常完成签到,获得积分20
10秒前
灰光呀完成签到,获得积分10
12秒前
membrane完成签到 ,获得积分10
13秒前
ccqqww完成签到,获得积分10
14秒前
15秒前
16秒前
yu完成签到 ,获得积分10
17秒前
Garrett完成签到 ,获得积分10
19秒前
美满花生发布了新的文献求助10
19秒前
20秒前
研友_LOoomL发布了新的文献求助10
22秒前
莲书发布了新的文献求助10
22秒前
24秒前
feitian201861完成签到,获得积分10
25秒前
25秒前
坦率的语芙完成签到,获得积分10
26秒前
讨厌下雨完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
韦威风发布了新的文献求助10
29秒前
29秒前
hh0发布了新的文献求助10
32秒前
讨厌下雨发布了新的文献求助10
33秒前
大个应助yu采纳,获得10
34秒前
34秒前
34秒前
Steven发布了新的文献求助10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241080
求助须知:如何正确求助?哪些是违规求助? 2885773
关于积分的说明 8240197
捐赠科研通 2554215
什么是DOI,文献DOI怎么找? 1382398
科研通“疑难数据库(出版商)”最低求助积分说明 649586
邀请新用户注册赠送积分活动 625199