断层(地质)
峰度
方位(导航)
模式识别(心理学)
停工期
希尔伯特-黄变换
故障检测与隔离
状态监测
时频分析
计算机科学
包络线(雷达)
主成分分析
人工智能
工程类
可靠性工程
数学
滤波器(信号处理)
统计
雷达
计算机视觉
电气工程
地质学
电信
地震学
执行机构
作者
Yongbo Li,Min Xu,Wei Yu,Wenhu Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2016-09-01
卷期号:65 (9): 2174-2189
被引量:53
标识
DOI:10.1109/tim.2016.2564078
摘要
Early fault diagnosis is crucial to reduce the machine downtime. This paper presents a novel method based on symbolic dynamic filtering (SDF) for early fault detection and intrinsic characteristic-scale decomposition (ICD) for fault type recognition. SDF is first applied to extract the fault feature for depicting bearing performance degradation. Then, a fault alarm is triggered using cumulative sum. Finally, the extracted abnormal signal is decomposed by the ICD method, and the kurtosis method is used to select a principal product component that contains most fault information for fault detection. The real life experimental results validate the effectiveness of the proposed method in early detection of bearing fault and fault diagnosis in comparison with Fourier transform, Hilbert envelope spectrum, original local mean decomposition and spectral kurtosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI