肿瘤缺氧
生物能学
核磁共振
缺氧(环境)
化学
饱和(图论)
体内
氧气
生物
内科学
医学
生物化学
物理
放射治疗
组合数学
生物技术
有机化学
数学
线粒体
作者
Einar K. Rofstad,Paul DeMuth,Bruce M. Fenton,Robert M. Sutherland
出处
期刊:PubMed
日期:1988-10-01
卷期号:48 (19): 5440-6
被引量:38
摘要
Relationships between tumor bioenergetic status on the one hand and intracapillary oxyhemoglobin (HbO2) saturation status and fraction of radiobiologically hypoxic cells on the other were studied using two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI). Tumor energy metabolism was studied in vivo by 31P nuclear magnetic resonance (NMR) spectroscopy and the resonance area ratio (PCr + NTP beta)/Pi was used as parameter for bioenergetic status. Intracapillary HbO2 saturation status reflects the oxygen supply conditions in tumors and was measured in vitro using a cryospectrophotometric method. The KHT, RIF-1, and MLS lines showed decreasing bioenergetic status, i.e., decreasing PCr and NTP beta resonances and an increasing Pi resonance, with increasing tumor volume, whereas the OWI line showed no changes in these resonances during tumor growth. The volume-dependence of the HbO2 saturation status differed similarly among the tumor lines; HbO2 saturation status decreased with increasing tumor volume for the KHT, RIF-1, and MLS lines and was independent of tumor volume for the OWI line. Moreover, linear correlations were found between bioenergetic status and HbO2 saturation status for individual tumors of the KHT, RIF-1, and MLS lines. These observations together indicated a direct relationship between 31P-NMR spectral parameters and tumor oxygen supply conditions. However, this relationship was not identical for the different tumor lines, suggesting that it was influenced by intrinsic properties of the tumor cells such as rate of respiration and ability to survive under hypoxia. Similarly, there was no correlation between bioenergetic status and fraction of radiobiologically hypoxic cells across the four tumor lines. This indicates that 31P-NMR spectroscopy data have to be supplemented with other data, e.g., rate of oxygen consumption, cell survival time under hypoxic stress, and/or fraction of metabolically active, nonclonogenic hypoxic cells, to be useful in quantitative determination of tumor hypoxia and hence prediction of tumor radioresistance caused by hypoxia.
科研通智能强力驱动
Strongly Powered by AbleSci AI