渐近最优算法
选择(遗传算法)
数学优化
蒙特卡罗方法
简单(哲学)
采样(信号处理)
自适应采样
计算机科学
样品(材料)
班级(哲学)
简单随机抽样
度量(数据仓库)
样本量测定
上下界
重要性抽样
数学
算法
统计
人工智能
数据挖掘
人口
化学
认识论
滤波器(信号处理)
色谱法
计算机视觉
哲学
数学分析
人口学
社会学
作者
Christopher Jennison,Iain M. Johnstone,Bruce W. Turnbull
出处
期刊:Elsevier eBooks
[Elsevier]
日期:1982-01-01
卷期号:: 55-86
被引量:42
标识
DOI:10.1016/b978-0-12-307502-4.50010-6
摘要
This chapter presents asymptotically optimal procedures for sequential adaptive selection of the best of several normal means. It is shown that for a sequential procedure based on elimination, if k, δ,{μi} and σ2 are fixed and P* →1, then there is a sharp asymptotic lower bound for the natural measure of efficiency. The chapter describes the class of elimination procedures with adaptive sampling, which do solve the selection problem. It also presents some Monte Carlo simulations to illustrate the potential savings in sample size that can be achieved by using fairly simple adaptive sampling rules.
科研通智能强力驱动
Strongly Powered by AbleSci AI