Characterizing solids mixing in DEM simulations

混合(物理) 粒状材料 结块 离散元法 流态化 流化床 粒子(生态学) 机械 多相流 CFD-DEM公司 计算机科学 统计物理学 材料科学 工艺工程 物理 地质学 工程类 热力学 海洋学 量子力学 冶金 复合材料
作者
Willem Godlieb,N.G. Deen,J.A.M. Kuipers
摘要

In the production and processing of granular matter, solids mixing plays an important role. Granular materials such as sand, polymeric particles and fertilizers are processed in different apparatus such as fluidized beds, rotary kilns and spouted beds. In the operation of these apparatus mixing often plays an important role, as it helps to prevent formation of hot-spots, off-spec products and undesired agglomerates. DEM can be used to simulate these granular systems and provide insight in mixing phenomena. Several methods to analyse and characterize mixing on basis of DEM data have been proposed in the past, but there is no general consensus on what method to use. In this paper we discuss various methods that are able to give quantitative information on the solids mixing state in granular systems based on DEM simulations. We apply the different methods to full 3D DEM simulations of a fluidized bed at different operating pressures. The following analysis methods will be investigated: average height method, Lacey index, nearest neighbours method, partner distance method and the sphere radius method. It is found that some of these methods are grid dependent, are not reproducible, are sensitive to macroscopic flow patters and/or are only able to calculate overall mixing indices, rather than indices for each direction. We compare some methods described in literature and in addition propose two new methods, which do not suffer from the disadvantages mentioned above. We applied each of these aforementioned methods to full 3D discrete particle simulations (DPM) with 280·103 particles and we performed simulations for seven different operating pressures. We found that, mixing improves with operating pressure caused by increased porosity and the increased granular temperature of the particulate phase.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
虚幻白玉发布了新的文献求助10
1秒前
清客完成签到 ,获得积分10
1秒前
传奇3应助阳阳采纳,获得10
1秒前
3秒前
皮皮桂发布了新的文献求助10
3秒前
Hello应助无奈傲菡采纳,获得10
3秒前
故意的傲玉应助FENGHUI采纳,获得10
4秒前
5秒前
科研通AI5应助nextconnie采纳,获得10
6秒前
James完成签到,获得积分10
6秒前
7秒前
Lucas应助sun采纳,获得10
8秒前
KristenStewart完成签到,获得积分10
10秒前
过时的热狗完成签到,获得积分10
10秒前
点点完成签到,获得积分10
10秒前
Zxc发布了新的文献求助10
11秒前
涨芝士完成签到 ,获得积分10
12秒前
13秒前
无名欧文关注了科研通微信公众号
13秒前
科研123完成签到,获得积分10
15秒前
crescent完成签到 ,获得积分10
17秒前
无奈傲菡发布了新的文献求助10
17秒前
烟花应助123号采纳,获得10
20秒前
超帅的遥完成签到,获得积分10
20秒前
Zxc完成签到,获得积分10
21秒前
lbt完成签到 ,获得积分10
22秒前
yao完成签到 ,获得积分10
23秒前
23秒前
25秒前
26秒前
26秒前
doudou完成签到 ,获得积分10
26秒前
BCS完成签到,获得积分10
26秒前
领导范儿应助KYN采纳,获得10
26秒前
27秒前
独特的莫言完成签到,获得积分10
29秒前
lin发布了新的文献求助10
30秒前
aero完成签到 ,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849