光纤布拉格光栅
扭矩
解调
光纤传感器
光纤
传感器
声学
刚度
物理
光学
计算机科学
电信
热力学
频道(广播)
作者
Mathias S. Müller,Lars Hoffmann,Thorbjörn C. Buck,Alexander W. Koch
标识
DOI:10.1080/15599610903144146
摘要
Robotic control and force-feedback applications require multi-axial force and torque sensing. One possible implementation of future sensors is seen in fiber optic force torque sensors, since the signal demodulation may be located in some distance to the actual sensor and they also do not have to include any magnetic material. This article presents a fiber Bragg grating-based force and torque sensor with six degrees of freedom. The general setup resembles a Stewart platform. Its connecting beams are formed by the fiber used to measure the deformation of the transducer. The element creating stiffness may be of arbitrary form. We demonstrate how the sensor is realized and show results of all six force and torque measurements. We present a theoretical model of the sensor. The results in this work demonstrate the feasibility of a fiber-optic force-torque sensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI