Wnt信号通路
WNT3A型
骨细胞
LRP5
细胞生物学
化学
硬骨素
信号转导
丹麦克朗
LRP6型
成骨细胞
基因表达
内分泌学
内科学
基因
生物
生物化学
医学
体外
作者
Ana Santos,Astrid D. Bakker,Behrouz Zandieh‐Doulabi,Cornelis M. Semeins,Jenneke Klein‐Nulend
摘要
Abstract Strain‐derived flow of interstitial fluid activates signal transduction pathways in osteocytes that regulate bone mechanical adaptation. Wnts are involved in this process, but whether mechanical loading modulates Wnt signaling in osteocytes is unclear. We assessed whether mechanical stimulation by pulsating fluid flow (PFF) leads to functional Wnt production, and whether nitric oxide (NO) is important for activation of the canonical Wnt signaling pathway in MLO‐Y4 osteocytes. MC3T3‐E1 osteoblasts were studied as a positive control for the MLO‐Y4 osteocyte response to mechanical loading. MLO‐Y4 osteocytes and MC3T3‐E1 osteoblasts were submitted to 1‐h PFF (0.7 ± 0.3 Pa, 5 Hz), and postincubated (PI) without PFF for 0.5–3 h. Gene expression of proteins related to the Wnt canonical and noncanonical pathways were studied using real‐time polymerase chain reaction (PCR). In MLO‐Y4 osteocytes, PFF upregulated gene expression of Wnt3a, c‐jun, connexin 43, and CD44 at 1–3‐h PI. In MC3T3‐E1 osteoblasts, PFF downregulated gene expression of Wnt5a and c‐jun at 0.5–3‐h PI. In MLO‐Y4 osteocytes, gene expression of PFF‐induced Wnt target genes was suppressed by the Wnt antagonist sFRP4, suggesting that loading activates the Wnt canonical pathway through functional Wnt production. The NO inhibitor L‐NAME suppressed the effect of PFF on gene expression of Wnt target genes, suggesting that NO might play a role in PFF‐induced Wnt production. The response to PFF differed in MC3T3‐E1 osteoblasts. Because Wnt signaling is important for bone mass regulation, osteocytes might orchestrate loading‐induced bone remodeling through, among others, Wnts. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1280–1287, 2009
科研通智能强力驱动
Strongly Powered by AbleSci AI