沉积物
磷
化学
环境化学
吸附
分馏
吸附
色谱法
地质学
有机化学
古生物学
作者
Sebastian Meis,Bryan M. Spears,Stephen C. Maberly,Michael O'Malley,Rupert Perkins
标识
DOI:10.1016/j.jenvman.2011.09.015
摘要
Lanthanum-modified bentonite clay (Phoslock(®) is a lake remediation tool designed to strip dissolved phosphorus (P) from the water column and increase the sediment P-sorption capacity. This study investigated short term alterations in sediment elemental composition and sediment P-fractions based on sediment cores taken 2 days before and 28 days following the application of 24 t of Phoslock® to a 9 ha, man-made reservoir. Following the application, sediment lanthanum (La) content increased significantly (p < 0.05; n = 4) in the top 8 cm of the sediment, thereby theoretically increasing sediment P-binding capacity on the whole reservoir scale by 250 kg. Mass balance calculations were used to estimate the theoretical binding of release-sensitive P (P(mobile); sum of 'labile P', 'reductant-soluble P' and 'organic P' fraction) by La across the top 4 cm and 10 cm depth of sediment. The amended mass of La in the sediment had the potential to bind 42% of P(mobile) present in the top 4 cm or 17% of P(mobile) present in the top 10 cm. However, with the exception of a significant increase (p<0.05; n=4) in the 'residual P' fraction in the top 2 cm, sediment P-fractions, including P(mobile,) did not differ significantly following the Phoslock® application. Experimental P-adsorption studies indicated P-saturation values for Phoslock® of 21,670 mg P kg⁻¹ Phoslock®. Sequential extraction of P from saturated Phoslock® under laboratory conditions indicated that around 21% of P bound by Phoslock® was release-sensitive, while around 79% of bound P was unlikely to be released under reducing or common pH (5-9) conditions in shallow lakes. Applying Phoslock® is, therefore, likely to increase the P-sorption capacity of sediments under reducing conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI