Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes

生物 绿藻科 藻类 作文(语言) 生态学 绿藻门 语言学 哲学
作者
Sami J. Taipale,Ursula Strandberg,Elina Peltomaa,AWE Galloway,Ann Ojala,Michael T. Brett
出处
期刊:Aquatic Microbial Ecology [Inter-Research Science Center]
卷期号:71 (2): 165-178 被引量:270
标识
DOI:10.3354/ame01671
摘要

AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 71:165-178 (2013) - DOI: https://doi.org/10.3354/ame01671 Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes Sami Taipale1,*, Ursula Strandberg2, Elina Peltomaa3, Aaron W. E. Galloway4, Anne Ojala3, Michael T. Brett5 1Department of Biological and Environmental Science, University of Jyväskylä, PL 35 (YA), 40014 Jyväskylä, Finland 2Department of Biology, University of Eastern Finland, Box 111, 80101 Joensuu, Finland 3Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland 4Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, University of Washington, 620 University Rd, Friday Harbor, Washington 98250, USA 5Department of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, Washington 98195-27000, USA *Email: sami.taipale@bytl.jyu.fi ABSTRACT: The fatty acid (FA) composition of algae is an important determinant of their food quality for consumers, and FAs can also be used as biomarkers for biochemical and energetic pathways in food webs. FA analyses of 7 freshwater algal classes and 37 strains showed clear similarity within classes and strong differences amongst classes. Class was a dominant factor (66.4%) explaining variation in FA signatures of microalgae. The 7 algal classes comprised 4 separate groups according to their FA profiles: (1) Chlorophyceae and Trebouxiophyceae, (2) Bacillariophyceae, (3) Cryptophyceae, Chrysophyceae, and Raphidophyceae, and (4) Euglenophyceae. Each group had a characteristic FA composition, although the proportional abundance of individual FAs also differed between species and with environmental conditions. FAs found to be particularly representative for each group (i.e. diagnostic biomarkers) were as follows: 16:4ω3 and 16:3ω3 for Chlorophyceae and Trebouxiophyceae; 16:2ω7, 16:2ω4, 16:3ω4, 16:4ω1, and 18:4ω4 for Bacillariophyceae; 22:5ω6 and 18:4ω3 for Cryptophyceae and Chrysophyceae (Synurales), 16:3ω1 for Chrysophyceae (Ochromonadales), 16:2ω4, 16:3ω4, 16:3ω1, and 20:3ω3 for Raphidophyceae; and 15:4ω2, 20:4ω3, 20:2ω6, 20:3ω6, and 22:4ω6 for Euglenophyceae. FAs thus offer a powerful tool to track different consumer diets in a lacustrine food web. Based on the 20:5ω3 (eicosapentaenoic acid) and 22:6ω3 (docosahexaenoic acid) content among the investigated freshwater algal classes, Chlorophyceae, Trebouxiophyceae, and Chrysophyceae are of intermediate food quality for zooplankton, and Cryptophyceae, Bacillariophyceae, Euglenophyceae, and Raphidophyceae should be excellent resources for zooplankton. KEY WORDS: Lipids · Diet quality · Omega-3 fatty acids · Lacustrine food web · Green algae · Diatoms · Cryptomonads Full text in pdf format PreviousNextCite this article as: Taipale S, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett MT (2013) Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat Microb Ecol 71:165-178. https://doi.org/10.3354/ame01671 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 71, No. 2. Online publication date: December 16, 2013 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2013 Inter-Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观的擎发布了新的文献求助10
刚刚
听话的幼蓉完成签到,获得积分20
刚刚
现在拨打发布了新的文献求助10
刚刚
孜然味的拜拜肉完成签到,获得积分10
刚刚
刚刚
大梦想家发布了新的文献求助10
1秒前
1111111完成签到,获得积分10
2秒前
4秒前
spiritpope发布了新的文献求助10
5秒前
鸡狗不如完成签到,获得积分10
6秒前
6秒前
白鲜香精发布了新的文献求助10
11秒前
1793480753完成签到 ,获得积分10
11秒前
zhuwenjian发布了新的文献求助10
12秒前
12秒前
大马哈鱼发布了新的文献求助10
14秒前
朴素的映冬完成签到,获得积分10
14秒前
16秒前
17秒前
123_完成签到,获得积分20
18秒前
天天快乐应助zjh采纳,获得10
20秒前
善良曼寒发布了新的文献求助30
21秒前
mouxq发布了新的文献求助10
22秒前
22秒前
KM比比发布了新的文献求助30
23秒前
善学以致用应助ta采纳,获得10
23秒前
24秒前
26秒前
zyy发布了新的文献求助10
27秒前
1111111发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
29秒前
Kvolu29发布了新的文献求助10
30秒前
田様应助听话的幼蓉采纳,获得10
32秒前
32秒前
33秒前
34秒前
34秒前
lhp完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959614
求助须知:如何正确求助?哪些是违规求助? 3505862
关于积分的说明 11126541
捐赠科研通 3237790
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871688
科研通“疑难数据库(出版商)”最低求助积分说明 802963