材料科学
光纤布拉格光栅
折射率
大气温度范围
光电子学
光纤
锗
制作
温度测量
热稳定性
热扩散率
退火(玻璃)
光学
复合材料
硅
化学
物理
病理
气象学
有机化学
医学
量子力学
替代医学
波长
作者
Bowei Zhang,Mojtaba Kahrizi
出处
期刊:IEEE Sensors Journal
[Institute of Electrical and Electronics Engineers]
日期:2007-03-14
卷期号:7 (4): 586-591
被引量:259
标识
DOI:10.1109/jsen.2007.891941
摘要
Fiber Bragg grating (FBG) temperature sensor and sensor arrays were applied widespread particularly in harsh environments. Although FBGs are often referring to permanent refractive index modulation in the fiber core, exposure to high-temperature environments usually results in the bleach of the refractive index modulation. The maximum temperature reported for the conventional FBG temperature sensor is around 600 degC due to its weak bonds of germanium and oxygen. In this paper, we report design and development of a novel high-temperature resistance FBG temperature sensor, based on the hydrogen-loaded germanium-doped FBG. The refractive index modulation in the FBG is induced by the molecular water. The results of our experiments have shown that the stability of the device is substantially increased at high temperature range. Due to the high bonds energy of hydroxyl and the low diffusivity of the molecular water, the thermal testing results of this temperature sensor show the thermal stability of hydrogen-loaded FBG can be increased by using annealing treatment; moreover, the highest erasing temperature for the device could reach to 1100 degC or more. The reflectivity of this new FBG depends on the concentration of Si-OH and indirectly related to the reflectivity of hydrogen-loaded FBG. Furthermore, the experimental results have provided a better understanding of the formation of the hydrogen-loaded FBGs and the chemical transfers at elevated temperatures in the fiber core
科研通智能强力驱动
Strongly Powered by AbleSci AI