>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared

钝化 薄脆饼 类型(生物学) 材料科学 物理 分析化学(期刊) 光电子学 拓扑(电路) 电气工程 纳米技术 化学 有机化学 生物 工程类 生态学 图层(电子)
作者
Antoine Descoeudres,Zachary C. Holman,Loris Barraud,S. Morel,Stefaan De Wolf,Christophe Ballif
出处
期刊:IEEE Journal of Photovoltaics 卷期号:3 (1): 83-89 被引量:189
标识
DOI:10.1109/jphotov.2012.2209407
摘要

The properties and high-efficiency potential of front- and rear-emitter silicon heterojunction solar cells on n- and p-type wafers were experimentally investigated. In the low-carrier-injection range, cells on p-type wafers suffer from reduced minority carrier lifetime, mainly due to the asymmetry in interface defect capture cross sections. This leads to slightly lower fill factors than for n-type cells. By using high-quality passivation layers, however, these losses can be minimized. High open-circuit voltages ( V oc s) were obtained on both types of float zone (FZ) wafers: up to 735 mV on n-type and 726 mV on p-type. The best V oc measured on Czochralski (CZ) p-type wafers was only 692 mV, whereas it reached 732 mV on CZ n-type. The highest aperture-area certified efficiencies obtained on 4 cm 2 cells were 22.14% ( V oc = 727 mV , FF = 78.4%) and 21.38% ( V oc = 722 mV, FF = 77.1%) on n- and p-type FZ wafers, respectively, proving that heterojunction schemes can perform almost as well on high-quality p-type as on n-type wafers. To our knowledge, this is the highest efficiency ever reported for a full silicon heterojunction solar cell on a p-type wafer, and the highest V oc on any p-type crystalline silicon device with reasonable FF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zfy采纳,获得10
1秒前
sak完成签到,获得积分10
2秒前
Shuo Yang发布了新的文献求助20
2秒前
呜呜呜呜发布了新的文献求助10
2秒前
在水一方应助hhzz采纳,获得10
2秒前
旧是完成签到 ,获得积分10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
杨小胖完成签到 ,获得积分10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
mm发布了新的文献求助10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
shouyu29应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
sutharsons应助科研通管家采纳,获得30
5秒前
归海含烟完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
shire应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
RC_Wang应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
匹诺曹发布了新的文献求助10
6秒前
唐画完成签到 ,获得积分10
6秒前
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808