亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-Mechanism-Based Pharmacokinetic/Pharmacodynamic Model for the Combination Use of Dexamethasone and Gemcitabine in Breast Cancer

吉西他滨 药理学 药代动力学 药效学 体内 地塞米松 医学 药代动力学相互作用 癌症 药物相互作用 化学 内科学 生物 生物技术
作者
Yuan Yin,Xuan Zhou,Yupeng Ren,Shupei Zhou,Lijie Wang,Shuangmin Ji,Ming Hua,Liang Li,Wei Lu,Tianyan Zhou
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:104 (12): 4399-4408 被引量:15
标识
DOI:10.1002/jps.24629
摘要

Our study aimed at the investigation of in vivo anticancer effect of the combination use of dexamethasone (DEX) and gemcitabine (GM) as well as the development of pharmacokinetic/pharmacodynamic (PK/PD) models in MCF-7 xenograft model. Further, simulations were conducted to optimize doses and administration schedules. The inhibitory effect of different doses and administration schedules were investigated in MCF-7 xenograft model. Semi-mechanism-based PK/PD models were established based on the preclinical data to characterize the relationship between plasma concentration and the time course of the drug response quantitatively. The PK/PD models were further applied to predict and optimize doses and administration schedules, which would lead to tumor stasis by the end of the treatment. Synergistic effect was observed in the PD study in vivo and further confirmed by the estimated combination index ψ obtained from PK/PD models. The optimum dose regimen was selected as DEX 2 mg/kg, qd and GM 10 mg/kg, q2d based on the simulation results. In summary, the PD interaction between DEX and GM was demonstrated as synergism by both experimental results and modeling approach. Dosage regimens were optimized as predicted by modeling and simulations, which would provide reference for preclinical study and translational research as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
8秒前
顺颂时祺发布了新的文献求助10
11秒前
14秒前
40秒前
FG发布了新的文献求助10
44秒前
47秒前
51秒前
tt完成签到,获得积分20
51秒前
tt发布了新的文献求助10
54秒前
ceeray23发布了新的文献求助30
55秒前
58秒前
ho应助科研通管家采纳,获得10
59秒前
ho应助科研通管家采纳,获得10
59秒前
kentonchow应助气945采纳,获得10
59秒前
1分钟前
学术小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
洁净的千凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Alice发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Shawn发布了新的文献求助10
2分钟前
Alice完成签到,获得积分20
2分钟前
cao_bq完成签到,获得积分10
2分钟前
2分钟前
2分钟前
genius_yue发布了新的文献求助30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
3分钟前
hsj完成签到,获得积分10
3分钟前
genius_yue完成签到,获得积分10
3分钟前
3分钟前
潇洒的月光完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827