Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors

医学 骨关节炎 内科学 入射(几何) 生物信息学 病理 生物 替代医学 物理 光学
作者
H. Kerkhof,Sita M.A. Bierma‐Zeinstra,Nigel Arden,Sarah Metrustry,Martha C. Castaño‐Betancourt,David J. Hart,Albert Hofman,Fernando Rivadeneira,E.H. Oei,Tim D. Spector,André G. Uitterlinden,A. Cecile J.W. Janssens,Ana M. Valdes,Joyce B. J. van Meurs
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:73 (12): 2116-2121 被引量:137
标识
DOI:10.1136/annrheumdis-2013-203620
摘要

Objective

To develop and validate a prognostic model for incident knee osteoarthritis (KOA) in a general population and determine the value of different risk factor groups to prediction.

Methods

The prognostic model was developed in 2628 individuals from the Rotterdam Study-I (RS-I). Univariate and multivariate analyses were performed for questionnaire/easily obtainable variables, imaging variables, genetic and biochemical markers. The extended multivariate model was tested on discrimination (receiver operating characteristic curve and area under the curve (AUC)) in two other population-based cohorts: Rotterdam Study-II and Chingford Study.

Results

In RS-I, there was moderate predictive value for incident KOA based on the genetic score alone in subjects aged <65 years (AUC 0.65), while it was only 0.55 for subjects aged ≥65 years. The AUC for gender, age and body mass index (BMI) in prediction for KOA was 0.66. Addition of the questionnaire variables, genetic score or biochemical marker urinary C-terminal cross-linked telopeptide of type II collagen to the model did not change the AUC. However, when adding the knee baseline KL score to the model the AUC increased to 0.79. Applying external validation, similar results were observed in the Rotterdam Study-II and the Chingford Study.

Conclusions

Easy obtainable 'Questionnaire' variables, genetic markers, OA at other joint sites and biochemical markers add only modestly to the prediction of KOA incidence using age, gender and BMI in an elderly population. Doubtful minor radiographic degenerative features in the knee, however, are a very strong predictor of future KOA. This is an important finding, as many radiologists do not report minor degenerative changes in the knee.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
李健应助孔顺宇采纳,获得30
2秒前
3秒前
无私的梦凡完成签到,获得积分10
3秒前
jennduck完成签到,获得积分20
3秒前
kkkkkkc发布了新的文献求助10
4秒前
4秒前
4秒前
滴迪氐媂发布了新的文献求助10
4秒前
LYH发布了新的文献求助10
5秒前
5秒前
luyuanchangchun完成签到,获得积分10
5秒前
IM小红旗完成签到,获得积分10
5秒前
忧伤的麦片关注了科研通微信公众号
6秒前
7秒前
雨雨爱薯条完成签到 ,获得积分10
7秒前
JH发布了新的文献求助60
7秒前
xu完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
干净听双完成签到,获得积分10
9秒前
10秒前
10秒前
jackie able发布了新的文献求助10
10秒前
六一完成签到,获得积分20
11秒前
11秒前
Adan完成签到,获得积分10
13秒前
Cdy完成签到,获得积分10
13秒前
顺心抽屉完成签到 ,获得积分10
13秒前
Figbiliy完成签到,获得积分10
13秒前
炸药发布了新的文献求助10
13秒前
暖冬22完成签到,获得积分10
13秒前
Miya完成签到 ,获得积分10
13秒前
13秒前
13秒前
xu发布了新的文献求助20
14秒前
15秒前
yixi发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469034
求助须知:如何正确求助?哪些是违规求助? 4572251
关于积分的说明 14334549
捐赠科研通 4499069
什么是DOI,文献DOI怎么找? 2464895
邀请新用户注册赠送积分活动 1453435
关于科研通互助平台的介绍 1427961