已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncovering Hierarchical and Overlapping Communities with a Local-First Approach

计算机科学 节点(物理) 不相交集 群落结构 分拆(数论) 复杂网络 直觉 层级组织 元数据 社会联系 水准点(测量) 理论计算机科学 数据挖掘 数据科学 人工智能 地理 万维网 数学 心理学 心理治疗师 哲学 大地测量学 工程类 经济 管理 结构工程 认识论 组合数学
作者
Michele Coscia,Giulio Rossetti,Fosca Giannotti,Dino Pedreschi
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:9 (1): 1-27 被引量:57
标识
DOI:10.1145/2629511
摘要

Community discovery in complex networks is the task of organizing a network’s structure by grouping together nodes related to each other. Traditional approaches are based on the assumption that there is a global-level organization in the network. However, in many scenarios, each node is the bearer of complex information and cannot be classified in disjoint clusters. The top-down global view of the partition approach is not designed for this. Here, we represent this complex information as multiple latent labels, and we postulate that edges in the networks are created among nodes carrying similar labels. The latent labels are the communities a node belongs to and we discover them with a simple local-first approach to community discovery. This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, its ego neighborhood, using a label propagation algorithm, assuming that each node is aware of the label it shares with each of its connections. The local communities are merged hierarchically, unveiling the modular organization of the network at the global level and identifying overlapping groups and groups of groups. We tested this intuition against the state-of-the-art overlapping community discovery and found that our new method advances in the chosen scenarios in the quality of the obtained communities. We perform a test on benchmark and on real-world networks, evaluating the quality of the community coverage by using the extracted communities to predict the metadata attached to the nodes, which we consider external information about the latent labels. We also provide an explanation about why real-world networks contain overlapping communities and how our logic is able to capture them. Finally, we show how our method is deterministic, is incremental, and has a limited time complexity, so that it can be used on real-world scale networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wanghaiyang采纳,获得100
刚刚
6秒前
甜蜜乐松完成签到,获得积分10
18秒前
22秒前
yuntong完成签到 ,获得积分10
26秒前
26秒前
暖暖完成签到,获得积分20
27秒前
赘婿应助orange9采纳,获得10
31秒前
顺风顺水顺科研完成签到,获得积分10
32秒前
君寻完成签到 ,获得积分10
35秒前
37秒前
orange9发布了新的文献求助10
41秒前
彳亍完成签到 ,获得积分10
46秒前
Owen应助初雪平寒采纳,获得10
51秒前
52秒前
balabala完成签到 ,获得积分10
54秒前
葛怀锐完成签到 ,获得积分10
54秒前
伶俐绿海完成签到 ,获得积分10
56秒前
kudoukoumei发布了新的文献求助10
1分钟前
小肖的KYT完成签到,获得积分10
1分钟前
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
本本完成签到 ,获得积分10
1分钟前
小天狼星完成签到,获得积分10
1分钟前
在水一方应助夜云采纳,获得10
1分钟前
初雪平寒发布了新的文献求助10
1分钟前
小肖的KYT给背后曼雁的求助进行了留言
1分钟前
初雪平寒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
1分钟前
夜云发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
Fischl完成签到 ,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379069
求助须知:如何正确求助?哪些是违规求助? 2994553
关于积分的说明 8759702
捐赠科研通 2679092
什么是DOI,文献DOI怎么找? 1467485
科研通“疑难数据库(出版商)”最低求助积分说明 678691
邀请新用户注册赠送积分活动 670381