某种肠道细菌
代谢组
结直肠癌
丁酸盐
阿克曼西亚
微生物群
粪便
代谢组学
普氏粪杆菌
粘蛋白
生物
肠道菌群
胃肠病学
组学
双歧杆菌
生理学
医学
内科学
微生物学
细菌
癌症
生物信息学
食品科学
拟杆菌
乳酸菌
生物化学
遗传学
发酵
作者
Tiffany L. Weir,Daniel K. Manter,Amy M. Sheflin,Brittany A. Barnett,Adam L. Heuberger,Elizabeth P. Ryan
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2013-08-06
卷期号:8 (8): e70803-e70803
被引量:479
标识
DOI:10.1371/journal.pone.0070803
摘要
In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11) prior to colon resection surgery at the University of Colorado Health-Poudre Valley Hospital in Fort Collins, CO. The V4 region of the 16s rRNA gene was pyrosequenced and both short chain fatty acids and global stool metabolites were extracted and analyzed utilizing Gas Chromatography-Mass Spectrometry (GC-MS). There were no significant differences in the overall microbial community structure associated with the disease state, but several bacterial genera, particularly butyrate-producing species, were under-represented in the CRC samples, while a mucin-degrading species, Akkermansia muciniphila, was about 4-fold higher in CRC (p<0.01). Proportionately higher amounts of butyrate were seen in stool of healthy individuals while relative concentrations of acetate were higher in stools of CRC patients. GC-MS profiling revealed higher concentrations of amino acids in stool samples from CRC patients and higher poly and monounsaturated fatty acids and ursodeoxycholic acid, a conjugated bile acid in stool samples from healthy adults (p<0.01). Correlative analysis between the combined datasets revealed some potential relationships between stool metabolites and certain bacterial species. These associations could provide insight into microbial functions occurring in a cancer environment and will help direct future mechanistic studies. Using integrated "omics" approaches may prove a useful tool in identifying functional groups of gastrointestinal bacteria and their associated metabolites as novel therapeutic and chemopreventive targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI