Electronic Properties of the Amino Acid Side Chains Contribute to the Structural Preferences in Protein Folding

氨基酸 侧链 化学 折叠(DSP实现) 取代基 电子效应 背景(考古学) 蛋白质折叠 立体化学 结晶学 位阻效应 生物化学 生物 有机化学 工程类 古生物学 电气工程 聚合物
作者
Donard S. Dwyer
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:18 (6): 881-892 被引量:25
标识
DOI:10.1080/07391102.2001.10506715
摘要

A database of 118 non-redundant proteins was examined to determine the preferences of amino acids for secondary structures: alpha-helix, beta-strand and coil conformations. To better understand how the physicochemical properties of amino acid side chains might influence protein folding, several new scales have been suggested for quantifying the electronic effects of amino acids. These include the pKa at the amino group, localized effect substituent constants (esigma), and a composite of these two scales (epsilon). Amino acids were also classified into 5 categories on the basis of their electronic properties: O (strong electron donor), U (weak donor), Z (ambivalent), B (weak electron acceptor), and X (strong acceptor). Certain categories of amino acid appeared to be critical for particular conformations, e.g., O and U-type residues for alpha-helix formation. Pairwise analysis of the database according to these categories revealed significant context effects in the structural preferences. In general, the propensity of an amino acid for a particular conformation was related to the electronic features of the side chain. Linear regression analyses revealed that the electronic properties of amino acids contributed about as much to the folding preferences as hydrophobicity, which is a well-established determinant of protein folding. A theoretical model has been proposed to explain how the electronic properties of the side chain groups might influence folding along the peptide backbone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伯赏诗霜发布了新的文献求助10
刚刚
糟糕的鹏飞完成签到 ,获得积分10
1秒前
1秒前
欢呼凡旋完成签到,获得积分10
2秒前
韩邹光完成签到,获得积分10
4秒前
xg发布了新的文献求助10
4秒前
5秒前
dktrrrr完成签到,获得积分10
5秒前
季生完成签到,获得积分10
8秒前
徐徐完成签到,获得积分10
8秒前
9秒前
9秒前
haku完成签到,获得积分10
11秒前
可爱的函函应助laodie采纳,获得10
13秒前
Singularity应助忆楠采纳,获得10
14秒前
15秒前
请叫我风吹麦浪应助PengHu采纳,获得30
16秒前
jjjjjj完成签到,获得积分10
16秒前
凝子老师发布了新的文献求助10
18秒前
18秒前
橙子fy16_发布了新的文献求助10
20秒前
cookie完成签到,获得积分10
20秒前
柒柒的小熊完成签到,获得积分10
21秒前
21秒前
Hello应助萌之痴痴采纳,获得10
22秒前
hahaer完成签到,获得积分10
24秒前
领导范儿应助失眠虔纹采纳,获得10
25秒前
26秒前
Owen应助凝子老师采纳,获得10
29秒前
29秒前
南宫炽滔完成签到 ,获得积分10
31秒前
31秒前
丘比特应助飞羽采纳,获得10
32秒前
沙拉发布了新的文献求助10
32秒前
33秒前
34秒前
椰子糖完成签到 ,获得积分10
35秒前
35秒前
ZHU完成签到,获得积分10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849