大豆蛋白
美拉德反应
化学
溶解度
乳状液
食品科学
黄原胶
糖基化
色谱法
生物化学
有机化学
材料科学
流变学
复合材料
作者
Ruiqi Li,Navam Hettiarachchy,Srinivas Rayaprolu,M.D. Davis,Satchithanandam Eswaranandam,Alok Jha,Pengyin Chen
标识
DOI:10.1007/s13197-014-1681-3
摘要
Functional properties of the soy protein need to improve to have better applications in food industry. Alkali extracted and acid precipitated soy protein isolate (SPI) was glycosylated using D-glucose (G) and Xanthan gum (X) via Maillard reaction to improve solubility. The effects of SPI to G and SPI to X ratios (SPI:G = 2:1, 1:1, and 1:2; SPI:X = 100:1 and 10:1) and incubation time (0, 6, 12, and 24 h) on the solubility and functional properties of glycosylated SPI were evaluated. The SPI:G ratio of 1:2 yielded a maximum degree of glycosylation of 71.1 %. The solubility of SPI after glycosylation significantly increased (P < 0.05) at pH 4.0-8.0 compared to SPI alone. Although the emulsion stability of glycosylated SPIs has not significantly increased (P > 0.05), the emulsifying activity improved significantly (P < 0.05). Glycosylation with SPI-X at a ratio of 10: 1 showed maximum emulsifying activity of 191.6 m(2)/g (SPI alone: 66.3 m(2)/g). Moreover, the SPI:X (ratio of 100:1) showed the maximum foaming activity (205 mL) compared to SPI alone (155 mL). The foaming stability of SPI (2.6 %) increased to 5.5 and 8.2 % when using xanthan gum at the ratio of 100:1 and 10:1, respectively. Glycosylated SPI with enhanced emulsifying and foaming properties has potential to improve the functional quality of the food products.
科研通智能强力驱动
Strongly Powered by AbleSci AI