亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of in Silico and in Vitro Tools for Scaffold Optimization during Drug Discovery: Predicting P-Glycoprotein Efflux

生物信息学 流出 药物发现 极表面积 P-糖蛋白 数量结构-活动关系 计算生物学 药品 化学 体外 药理学 生物化学 生物 多重耐药 立体化学 基因 有机化学 抗生素 分子
作者
Prashant Desai,Geri A. Sawada,Ian Watson,Thomas J. Raub
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:10 (4): 1249-1261 被引量:76
标识
DOI:10.1021/mp300555n
摘要

In silico tools are regularly utilized for designing and prioritizing compounds to address challenges related to drug metabolism and pharmacokinetics (DMPK) during the process of drug discovery. P-Glycoprotein (P-gp) is a member of the ATP-binding cassette (ABC) transporters with broad substrate specificity that plays a significant role in absorption and distribution of drugs that are P-gp substrates. As a result, screening for P-gp transport has now become routine in the drug discovery process. Typically, bidirectional permeability assays are employed to assess in vitro P-gp efflux. In this article, we use P-gp as an example to illustrate a well-validated methodology to effectively integrate in silico and in vitro tools to identify and resolve key barriers during the early stages of drug discovery. A detailed account of development and application of in silico tools such as simple guidelines based on physicochemical properties and more complex quantitative structure–activity relationship (QSAR) models is provided. The tools were developed based on structurally diverse data for more than 2000 compounds generated using a robust P-gp substrate assay over the past several years. Analysis of physicochemical properties revealed a significantly lower proportion (<10%) of P-gp substrates among the compounds with topological polar surface area (TPSA) <60 Å2 and the most basic cpKa <8. In contrast, this proportion of substrates was greater than 75% for compounds with TPSA >60 Å2 and the most basic cpKa >8. Among the various QSAR models evaluated to predict P-gp efflux, the Bagging model provided optimum prediction performance for prospective validation based on chronological test sets. Four sequential versions of the model were built with increasing numbers of compounds to train the models as new data became available. Except for the first version with the smallest training set, the QSAR models exhibited robust prediction profiles with positive prediction values (PPV) and negative prediction values (NPV) exceeding 80%. The QSAR model demonstrated better concordance with the manual P-gp substrate assay than an automated P-gp substrate screen. The in silico and the in vitro tools have been effectively integrated during early stages of drug discovery to resolve P-gp-related challenges exemplified by several case studies. Key learning based on our experience with P-gp can be widely applicable across other DMPK-related challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助lixiaojin采纳,获得10
12秒前
zpli完成签到 ,获得积分10
14秒前
Nefelibata完成签到,获得积分10
17秒前
20秒前
lixiaojin发布了新的文献求助10
25秒前
俭朴夜雪完成签到,获得积分10
26秒前
Limerencia完成签到,获得积分10
32秒前
lixiaojin完成签到,获得积分10
36秒前
打打应助wyg1994采纳,获得10
37秒前
烟花应助基围虾采纳,获得10
37秒前
下午好完成签到 ,获得积分10
38秒前
gc完成签到 ,获得积分10
40秒前
53秒前
1分钟前
八月发布了新的文献求助30
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
基围虾发布了新的文献求助10
1分钟前
吴嘉俊完成签到 ,获得积分10
1分钟前
largpark完成签到 ,获得积分10
2分钟前
樊冀鑫发布了新的文献求助20
2分钟前
上官若男应助zyc采纳,获得10
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
派大星完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zyc发布了新的文献求助10
2分钟前
hhhhhhh完成签到,获得积分10
2分钟前
2分钟前
燕海雪发布了新的文献求助10
2分钟前
zyc完成签到,获得积分10
2分钟前
潮人完成签到 ,获得积分10
2分钟前
燕海雪完成签到,获得积分10
2分钟前
3分钟前
Ni发布了新的文献求助10
3分钟前
3分钟前
3分钟前
学霸宇大王完成签到 ,获得积分10
3分钟前
伊坂完成签到 ,获得积分10
3分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784062
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989