铁质
化学
脂质过氧化
自动氧化
螯合作用
促氧化剂
氧气
激进的
生物化学
氧化磷酸化
去铁胺
核化学
活性氧
氧化应激
无机化学
有机化学
作者
Xi Huang,Jisen Dai,J. Fournier,Aktar Ali,Qi Zhang,Krystyna Frenkel
标识
DOI:10.1016/s0891-5849(01)00770-5
摘要
Ferrous ion (Fe2+) is long thought to be the most likely active species, producing oxidants through interaction of Fe2+ with oxygen (O2). Because current iron overload therapy uses only Fe3+ chelators, such as desferrioxamine (DFO), we have tested a hypothesis that addition of a Fe2+ chelator, 2,2′-dipyridyl (DP), may be more efficient and effective in preventing iron-induced oxidative damage in human liver HepG2 cells than DFO alone. Using ferrozine as an assay for iron measurement, levels of cellular iron in HepG2 cells treated with iron compounds correlated well with the extent of lipid peroxidation (r = 0.99 after log transformation). DP or DFO alone decreased levels of iron and lipid peroxidation in cells treated with iron. DFO + DP together had the most significant effect in preventing cells from lipid peroxidation but not as effective in decreasing overall iron levels in the cells. Using ESR spin trapping technique, we further tested factors that can affect oxidant-producing activity of Fe2+ with dissolved O2 in a cell-free system. Oxidant formation enhanced with increasing Fe2+ concentrations and reached a maximum at 5 mM of Fe2+. When the concentration of Fe2+ was increased to 50 mM, the oxidant-producing activity of Fe2+ sharply decreased to zero. The initial ratio of Fe3+:Fe2+ did not affect the oxidant producing activity of Fe2+. However, an acidic pH (< 3.5) significantly slowed down the rate of the reaction. Our results suggest that reaction of Fe2+ with O2 is an important one for oxidant formation in biological system, and therefore, drugs capable of inhibiting redox activity of Fe2+ should be considered in combination with a Fe3+ chelator for iron overload chelation therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI