The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin

透皮 胰岛素 体内 吸收(声学) 化学 溶解 透明质酸 药理学 材料科学 生物医学工程 医学 内科学 复合材料 生物 解剖 有机化学 生物技术
作者
Shu Liu,Mei‐Na Jin,Ying-Shu Quan,Fumio Kamiyama,Hidemasa Katsumi,Toshiyasu Sakane,Akira Yamamoto
出处
期刊:Journal of Controlled Release [Elsevier BV]
卷期号:161 (3): 933-941 被引量:277
标识
DOI:10.1016/j.jconrel.2012.05.030
摘要

The aim of the present study was to develop novel insulin-loaded microneedle arrays (MNs) fabricated from hyaluronic acid (HA), and characterize their applicability in the transdermal delivery of insulin. The shape of MNs was observed via scanning electron microscopy. The characteristics of these novel insulin-loaded MNs, including hygroscopy, stability, drug release profiles, and dissolution properties, were evaluated from a clinical application point-of-view. Transepidermal water loss (TEWL) was measured to investigate the piercing properties of MNs, and the recovery of the skin barrier after the removal of MNs to confirm their safety. Additionally, the transdermal absorption of insulin from MNs was examined via an in vivo absorption study in diabetic rats. The length of MNs was 800 μm with a base diameter of 160 μm and a tip diameter of 40 μm. MNs were found to maintain their skin piercing abilities for at least 1h, even at a relative humidity of 75%. After storing insulin-loaded MNs for a month at -40, 4, 20, and 40 °C, more than 90% of insulin remained in MNs at all temperatures, indicating that insulin is highly stable in MNs at these storage conditions. It was also found that insulin is rapidly released from MNs via an in vitro release study. These findings were consistent with the complete dissolution of MNs within 1h of application to rat skin in vivo. Therefore, the novel HA MNs possess self-dissolving properties after their dermal application, and insulin appears to be rapidly released from these MNs. A significant increase in TEWL was observed after the application of MNs. However, this parameter recovered back to baseline within 24h after the removal of MNs. These findings indicate that the transdermal transport pathway of insulin, which was created by the MNs, disappeared within 24h, and that the skin damage induced by the MNs was reversible. Furthermore, a dose-dependent hypoglycemic effect and transdermal delivery of insulin were observed after a dermal treatment with insulin-loaded MNs in vivo. A continuous hypoglycemic effect was observed after 0.25 IU of insulin was administered to skin via MNs. Additionally, lower peak plasma insulin levels, but higher plasma insulin concentrations after 2 h, were achieved with 0.25 IU of insulin administered via MNs as compared to the subcutaneous administration of insulin of the same dose. Pharmacodynamic and pharmacokinetic parameters indicated that insulin administered via MNs was almost completely absorbed from the skin into the systemic circulation, and that the hypoglycemic effect of insulin-loaded MNs was almost similar to that of the subcutaneous injection of insulin. These findings indicate that the novel insulin-loaded MNs fabricated from HA are a very useful alternative method of delivering insulin via the skin into the systemic circulation without inducing serious skin damage. Therefore, HA MNs may be an effective and safe method of transdermal insulin delivery in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy2025完成签到,获得积分10
3秒前
木雨亦潇潇完成签到,获得积分10
10秒前
香蕉觅云应助nine2652采纳,获得10
12秒前
量子星尘发布了新的文献求助10
16秒前
芳华如梦完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
土豆丝完成签到 ,获得积分10
19秒前
琦琦完成签到,获得积分10
28秒前
zzzz完成签到,获得积分20
33秒前
GEZIKU完成签到 ,获得积分10
34秒前
41秒前
48秒前
赵三岁发布了新的文献求助10
55秒前
wwb完成签到,获得积分10
58秒前
1分钟前
1分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
1分钟前
能干冰露完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
周小鱼完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
老张完成签到,获得积分10
1分钟前
1分钟前
zhugao完成签到,获得积分10
1分钟前
1分钟前
南风知我意完成签到,获得积分10
1分钟前
朴实寻琴完成签到 ,获得积分10
1分钟前
可可可爱完成签到 ,获得积分10
1分钟前
lsy完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wwb发布了新的文献求助10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022