期望最大化算法
范畴变量
缺少数据
最大化
计算机科学
算法
最大似然
断层(地质)
数据挖掘
故障检测与隔离
数学优化
人工智能
数学
统计
机器学习
地质学
地震学
执行机构
作者
Kangkang Zhang,Rubén González Crespo,Biao Huang,Guoli Ji
出处
期刊:IEEE Transactions on Industrial Electronics
[Institute of Electrical and Electronics Engineers]
日期:2014-09-13
卷期号:62 (2): 1231-1240
被引量:79
标识
DOI:10.1109/tie.2014.2336635
摘要
This paper introduces a data-driven approach for fault diagnosis in the presence of incomplete monitor data. The expectation-maximization (EM) algorithm is applied to handle missing data in order to obtain a maximum-likelihood solution for the discrete (or categorical) distribution. Because of the nature of categorical distributions, the maximization step of the EM algorithm is shown in this paper to have an easily calculated analytical solution, making this method computationally simple. An experimental study on a ball-and-tube system is investigated to demonstrate advantages of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI