Identification of Olfactory Volatiles using Gas Chromatography-Multi-unit Recordings (GCMR) in the Insect Antennal Lobe

触角叶 气味 感器 昆虫 感觉系统 嗅觉 生物 神经科学 嗅觉系统 电生理学 天线(收音机) 嗅觉感受器 解剖 生态学 计算机科学 电信
作者
Kelsey J. R. P. Byers,Elischa Sanders,Jeffrey A. Riffell
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (72) 被引量:4
标识
DOI:10.3791/4381
摘要

All organisms inhabit a world full of sensory stimuli that determine their behavioral and physiological response to their environment. Olfaction is especially important in insects, which use their olfactory systems to respond to, and discriminate amongst, complex odor stimuli. These odors elicit behaviors that mediate processes such as reproduction and habitat selection(1-3). Additionally, chemical sensing by insects mediates behaviors that are highly significant for agriculture and human health, including pollination(4-6), herbivory of food crops(7), and transmission of disease(8,9). Identification of olfactory signals and their role in insect behavior is thus important for understanding both ecological processes and human food resources and well-being. To date, the identification of volatiles that drive insect behavior has been difficult and often tedious. Current techniques include gas chromatography-coupled electroantennogram recording (GC-EAG), and gas chromatography-coupled single sensillum recordings (GC-SSR)(10-12). These techniques proved to be vital in the identification of bioactive compounds. We have developed a method that uses gas chromatography coupled to multi-channel electrophysiological recordings (termed 'GCMR') from neurons in the antennal lobe (AL; the insect's primary olfactory center)(13,14). This state-of-the-art technique allows us to probe how odor information is represented in the insect brain. Moreover, because neural responses to odors at this level of olfactory processing are highly sensitive owing to the degree of convergence of the antenna's receptor neurons into AL neurons, AL recordings will allow the detection of active constituents of natural odors efficiently and with high sensitivity. Here we describe GCMR and give an example of its use. Several general steps are involved in the detection of bioactive volatiles and insect response. Volatiles first need to be collected from sources of interest (in this example we use flowers from the genus Mimulus (Phyrmaceae)) and characterized as needed using standard GC-MS techniques(14-16). Insects are prepared for study using minimal dissection, after which a recording electrode is inserted into the antennal lobe and multi-channel neural recording begins. Post-processing of the neural data then reveals which particular odorants cause significant neural responses by the insect nervous system. Although the example we present here is specific to pollination studies, GCMR can be expanded to a wide range of study organisms and volatile sources. For instance, this method can be used in the identification of odorants attracting or repelling vector insects and crop pests. Moreover, GCMR can also be used to identify attractants for beneficial insects, such as pollinators. The technique may be expanded to non-insect subjects as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmq发布了新的文献求助30
刚刚
刚刚
1秒前
卡卡发布了新的文献求助10
1秒前
2秒前
RCrisp完成签到,获得积分20
2秒前
刘洪均完成签到,获得积分10
2秒前
3秒前
梦幻发布了新的文献求助10
4秒前
Landau完成签到,获得积分10
5秒前
妮妮完成签到,获得积分10
5秒前
充电宝应助不胜玖采纳,获得50
6秒前
妮妮爱smile完成签到,获得积分10
6秒前
7秒前
7秒前
永远55度发布了新的文献求助10
8秒前
今后应助快乐的水绿采纳,获得10
9秒前
9秒前
10秒前
Akim应助拓跋听南采纳,获得20
10秒前
11秒前
Hover完成签到,获得积分0
11秒前
呆萌松鼠完成签到,获得积分10
11秒前
秋刀鱼完成签到,获得积分10
12秒前
苻尔曼完成签到,获得积分20
12秒前
gao完成签到,获得积分10
13秒前
禹平露完成签到,获得积分10
14秒前
ai化学发布了新的文献求助10
14秒前
徐嘎嘎发布了新的文献求助10
15秒前
15秒前
15秒前
呜呜发布了新的文献求助10
16秒前
16秒前
ZJX发布了新的文献求助10
17秒前
Tristan完成签到 ,获得积分10
17秒前
18秒前
yeye完成签到,获得积分10
19秒前
zyy发布了新的文献求助30
21秒前
西哥发布了新的文献求助10
21秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814