延髓头端腹外侧区
微量注射
延髓
泛素
化学
神经保护
泛素连接酶
蛋白酶体
药理学
内分泌学
内科学
生物化学
生物
医学
中枢神经系统
基因
作者
Chi Chang,Alice Y. Chang,Samuel H.H. Chan
出处
期刊:Shock
[Ovid Technologies (Wolters Kluwer)]
日期:2004-11-10
卷期号:22 (6): 575-581
被引量:7
标识
DOI:10.1097/01.shk.0000140665.57659.b5
摘要
Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) is a deubiquitinating enzyme that is responsible for making ubiquitin, which is required to target proteins for degradation by the ubiquitin-proteasome pathway in neurons, available. We investigated whether UCH-L1 plays a neuroprotective role at the rostral ventrolateral medulla (RVLM), the origin of sympathetic neurogenic vasomotor tone in the medulla oblongata where the organophosphate insecticide mevinphos (Mev) acts to elicit cardiovascular toxicity. In Sprague-Dawley rats maintained under propofol anesthesia, Mev (960 μg/kg, i.v.) induced a parallel and progressive augmentation in UCH-L1 or ubiquitin expression at the ventrolateral medulla during the course of Mev intoxication. The increase in UCH-L1 level was significantly blunted on pretreatment with bilateral microinjection into the RVLM of a transcription inhibitor, actinomycin D (5 nmol), or a translation inhibitor, cycloheximide (20 nmol). Compared with aCSF or sense oligonucleotide (100 pmol) pretreatment, microinjection of an antisense uch-L1 oligonucleotide (100 pmol) bilaterally into the RVLM significantly increased mortality, reduced the duration of the “pro-life” phase, blunted the increase in ubiquitin expression in ventrolateral medulla, and augmented the induced hypotension in rats that received Mev. These findings suggest that de novo synthesis of UCH-L1, leading to an enhanced disassembly of ubiquitin-protein conjugates in the RVLM, is essential to maintenance of the “pro-life” phase of Mev intoxication via prevention of cardiovascular depression, leading to neuroprotection.
科研通智能强力驱动
Strongly Powered by AbleSci AI