High-Sensitivity LC-MS/MS Quantification of Peptides and Proteins in Complex Biological Samples: The Impact of Enzymatic Digestion and Internal Standard Selection on Method Performance

化学 色谱法 消化(炼金术) 分析物 样品制备 自下而上蛋白质组学 质谱法 串联质谱法 生物化学 蛋白质质谱法
作者
Kees J. Bronsema,Rainer Bischoff,Nico C. van de Merbel
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:85 (20): 9528-9535 被引量:83
标识
DOI:10.1021/ac4015116
摘要

Two important aspects of peptide and protein quantification by LC-MS/MS, the enzymatic digestion step and the internal standardization approach, were systematically investigated with a small protein, salmon calcitonin, which could be analyzed both without and with digestion. Quantification of undigested salmon calcitonin, after solid-phase extraction from plasma, resulted in a lower limit of quantification of 10 pg/mL, while introduction of a tryptic digestion step, followed by quantification of a signature peptide, increased this to 50 pg/mL. The sensitivity was reduced by interferences in the selected reaction monitoring (SRM) transition of the signature peptide due to the increase in sample complexity caused by the digestion and a less selective SRM transition of the signature peptide as compared to undigested salmon calcitonin. Eight internal standardization approaches were compared with respect to accuracy and precision in workflows with and without digestion. Analogue and stable-isotope-labeled (SIL) internal standards were evaluated including an in-house created (18)O-labeled peptide, a cleavable SIL peptide, and an internal standard created by differential derivatization of the signature peptide. We conclude that the best internal standard for the workflows both with and without digestion was the SIL form of the analyte, although the use of several SIL signature peptides and a differentially derivatized signature peptide also resulted in methods with performances which meet the FDA guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助Kkxx采纳,获得10
1秒前
LLL发布了新的文献求助10
1秒前
1秒前
1秒前
咸鱼王完成签到,获得积分10
2秒前
耍酷发布了新的文献求助20
2秒前
yyy发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助复杂的扬采纳,获得10
14秒前
凡枢杪完成签到,获得积分10
16秒前
pfangjin完成签到 ,获得积分10
17秒前
小太阳在营业应助ASDq采纳,获得30
18秒前
勤恳万宝路完成签到,获得积分10
19秒前
pepper发布了新的文献求助10
21秒前
渐变映射发布了新的文献求助10
22秒前
萱萱完成签到 ,获得积分10
23秒前
李健应助Ai_niyou采纳,获得10
24秒前
25秒前
yufengyan完成签到,获得积分10
27秒前
29秒前
30秒前
CipherSage应助闪闪的静槐采纳,获得10
31秒前
温梦花雨完成签到 ,获得积分10
32秒前
yufengyan发布了新的文献求助10
32秒前
34秒前
等月光落雪地完成签到,获得积分10
35秒前
着急的小松鼠完成签到,获得积分10
35秒前
怕黑书翠发布了新的文献求助10
37秒前
栉风沐雨发布了新的文献求助10
39秒前
39秒前
lizishu应助小胖采纳,获得10
40秒前
爆米花应助scifinder采纳,获得10
40秒前
Genetrix完成签到,获得积分10
42秒前
ldjldj_2004完成签到 ,获得积分10
45秒前
47秒前
48秒前
yyy发布了新的文献求助10
48秒前
稳重的蛟凤应助Ytion采纳,获得10
49秒前
50秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578