Prediction of Pharmacokinetics Prior to In Vivo Studies. 1. Mechanism‐Based Prediction of Volume of Distribution

体内 亲脂性 分配量 药代动力学 化学 分布(数学) 配送量 体积热力学 分配系数 药理学 色谱法 数学 生物化学 热力学 生物 物理 数学分析 生物技术
作者
Patrick Poulin,Frank‐Peter Theil
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:91 (1): 129-156 被引量:542
标识
DOI:10.1002/jps.10005
摘要

In drug discovery and nonclinical development the volume of distribution at steady state (V(ss)) of each novel drug candidate is commonly determined under in vivo conditions. Therefore, it is of interest to predict V(ss) without conducting in vivo studies. The traditional description of V(ss) corresponds to the sum of the products of each tissue:plasma partition coefficient (P(t:p)) and the respective tissue volume in addition to the plasma volume. Because data on volumes of tissues and plasma are available in the literature for mammals, the other input parameters needed to estimate V(ss) are the P(t:p)'s, which can potentially be predicted with established tissue composition-based equations. In vitro data on drug lipophilicity and plasma protein binding are the input parameters used in these equations. Such a mechanism-based approach would be particularly useful to provide first-cut estimates of V(ss) prior to any in vivo studies and to explore potential unexpected deviations between sets of predicted and in vivo V(ss) data, when the in vivo data become available during the drug development process. The objective of the present study was to use tissue composition-based equations to predict rat and human V(ss) prior to in vivo studies for 123 structurally unrelated compounds (acids, bases, and neutrals). The predicted data were compared with in vivo data obtained from the literature or at Roche. Overall, the average ratio of predicted-to-experimental rat and human V(ss) values was 1.06 (SD = 0.817, r = 0.78, n = 147). In fact, 80% of all predicted values were within a factor of two of the corresponding experimental values. The drugs can therefore be separated into two groups. The first group contains 98 drugs for which the predicted V(ss) were within a factor of two of those experimentally determined (average ratio of 1.01, SD = 0.39, r = 0.93, n = 118), and the second group includes 25 other drugs for which the predicted and experimental V(ss) differ by a factor larger than two (average ratio of 1.32, SD = 1.74, r = 0.42, n = 29). Thus, additional relevant distribution processes were neglected in predicting V(ss) of drugs of the second group. This was true especially in the case of some cationic-amphiphilic bases. The present study is the first attempt to develop and validate a mechanistic distribution model for predicting rat and human V(ss) of drugs prior to in vivo studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nnn完成签到,获得积分10
2秒前
WL完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
豪宝好饱完成签到 ,获得积分10
4秒前
逸晨完成签到,获得积分20
5秒前
李健应助okkkk采纳,获得10
5秒前
7秒前
深情安青应助辛勤金连采纳,获得10
7秒前
10秒前
patience发布了新的文献求助10
12秒前
Hou完成签到 ,获得积分10
12秒前
石家豪发布了新的文献求助10
13秒前
香蕉觅云应助nn采纳,获得10
14秒前
赘婿应助123lura采纳,获得10
15秒前
15秒前
xxt完成签到,获得积分10
15秒前
烦的很精彩完成签到,获得积分10
15秒前
16秒前
WN发布了新的文献求助10
16秒前
CodeCraft应助patience采纳,获得10
16秒前
guo完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
含糊的代丝完成签到,获得积分10
19秒前
许寻笙完成签到 ,获得积分10
19秒前
标致小天鹅完成签到,获得积分10
20秒前
fmd123完成签到,获得积分20
20秒前
21秒前
23秒前
23秒前
fmd123发布了新的文献求助20
24秒前
lklklk完成签到,获得积分10
27秒前
27秒前
酷炫静枫发布了新的文献求助10
28秒前
狂野恶天发布了新的文献求助20
28秒前
white完成签到 ,获得积分10
28秒前
葡萄成熟发布了新的文献求助10
28秒前
jojo完成签到 ,获得积分10
29秒前
30秒前
31秒前
Aking完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337