Prediction of Pharmacokinetics Prior to In Vivo Studies. 1. Mechanism‐Based Prediction of Volume of Distribution

体内 亲脂性 分配量 药代动力学 化学 分布(数学) 配送量 体积热力学 分配系数 药理学 色谱法 数学 生物化学 热力学 生物 物理 生物技术 数学分析
作者
Patrick Poulin,Frank‐Peter Theil
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:91 (1): 129-156 被引量:542
标识
DOI:10.1002/jps.10005
摘要

In drug discovery and nonclinical development the volume of distribution at steady state (V(ss)) of each novel drug candidate is commonly determined under in vivo conditions. Therefore, it is of interest to predict V(ss) without conducting in vivo studies. The traditional description of V(ss) corresponds to the sum of the products of each tissue:plasma partition coefficient (P(t:p)) and the respective tissue volume in addition to the plasma volume. Because data on volumes of tissues and plasma are available in the literature for mammals, the other input parameters needed to estimate V(ss) are the P(t:p)'s, which can potentially be predicted with established tissue composition-based equations. In vitro data on drug lipophilicity and plasma protein binding are the input parameters used in these equations. Such a mechanism-based approach would be particularly useful to provide first-cut estimates of V(ss) prior to any in vivo studies and to explore potential unexpected deviations between sets of predicted and in vivo V(ss) data, when the in vivo data become available during the drug development process. The objective of the present study was to use tissue composition-based equations to predict rat and human V(ss) prior to in vivo studies for 123 structurally unrelated compounds (acids, bases, and neutrals). The predicted data were compared with in vivo data obtained from the literature or at Roche. Overall, the average ratio of predicted-to-experimental rat and human V(ss) values was 1.06 (SD = 0.817, r = 0.78, n = 147). In fact, 80% of all predicted values were within a factor of two of the corresponding experimental values. The drugs can therefore be separated into two groups. The first group contains 98 drugs for which the predicted V(ss) were within a factor of two of those experimentally determined (average ratio of 1.01, SD = 0.39, r = 0.93, n = 118), and the second group includes 25 other drugs for which the predicted and experimental V(ss) differ by a factor larger than two (average ratio of 1.32, SD = 1.74, r = 0.42, n = 29). Thus, additional relevant distribution processes were neglected in predicting V(ss) of drugs of the second group. This was true especially in the case of some cationic-amphiphilic bases. The present study is the first attempt to develop and validate a mechanistic distribution model for predicting rat and human V(ss) of drugs prior to in vivo studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼发布了新的文献求助10
刚刚
星辰大海应助水煮鱼采纳,获得10
1秒前
念心发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
科研通AI6应助何海采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Heaven发布了新的文献求助10
2秒前
seven完成签到,获得积分10
3秒前
AaronW完成签到 ,获得积分10
3秒前
董先生完成签到,获得积分20
3秒前
ABC发布了新的文献求助10
4秒前
5秒前
BKhang完成签到,获得积分10
5秒前
5秒前
5秒前
wenxiang发布了新的文献求助10
6秒前
zeng完成签到,获得积分10
8秒前
慕青应助yang采纳,获得10
8秒前
一种信仰完成签到 ,获得积分10
8秒前
kiki发布了新的文献求助10
9秒前
ro发布了新的文献求助10
9秒前
鱼鱼完成签到,获得积分10
9秒前
SciGPT应助无语的仰采纳,获得10
10秒前
tumankol发布了新的文献求助10
10秒前
修马儿发布了新的文献求助10
11秒前
14秒前
求文献完成签到,获得积分10
14秒前
蓝天完成签到,获得积分10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
老实幻姬应助变化采纳,获得40
18秒前
KK完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
11发布了新的文献求助10
20秒前
风中的含羞草完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660366
求助须知:如何正确求助?哪些是违规求助? 4833486
关于积分的说明 15090434
捐赠科研通 4819032
什么是DOI,文献DOI怎么找? 2578985
邀请新用户注册赠送积分活动 1533542
关于科研通互助平台的介绍 1492262