Prediction of Pharmacokinetics Prior to In Vivo Studies. 1. Mechanism‐Based Prediction of Volume of Distribution

体内 亲脂性 分配量 药代动力学 化学 分布(数学) 配送量 体积热力学 分配系数 药理学 色谱法 数学 生物化学 热力学 生物 物理 生物技术 数学分析
作者
Patrick Poulin,Frank‐Peter Theil
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:91 (1): 129-156 被引量:542
标识
DOI:10.1002/jps.10005
摘要

In drug discovery and nonclinical development the volume of distribution at steady state (V(ss)) of each novel drug candidate is commonly determined under in vivo conditions. Therefore, it is of interest to predict V(ss) without conducting in vivo studies. The traditional description of V(ss) corresponds to the sum of the products of each tissue:plasma partition coefficient (P(t:p)) and the respective tissue volume in addition to the plasma volume. Because data on volumes of tissues and plasma are available in the literature for mammals, the other input parameters needed to estimate V(ss) are the P(t:p)'s, which can potentially be predicted with established tissue composition-based equations. In vitro data on drug lipophilicity and plasma protein binding are the input parameters used in these equations. Such a mechanism-based approach would be particularly useful to provide first-cut estimates of V(ss) prior to any in vivo studies and to explore potential unexpected deviations between sets of predicted and in vivo V(ss) data, when the in vivo data become available during the drug development process. The objective of the present study was to use tissue composition-based equations to predict rat and human V(ss) prior to in vivo studies for 123 structurally unrelated compounds (acids, bases, and neutrals). The predicted data were compared with in vivo data obtained from the literature or at Roche. Overall, the average ratio of predicted-to-experimental rat and human V(ss) values was 1.06 (SD = 0.817, r = 0.78, n = 147). In fact, 80% of all predicted values were within a factor of two of the corresponding experimental values. The drugs can therefore be separated into two groups. The first group contains 98 drugs for which the predicted V(ss) were within a factor of two of those experimentally determined (average ratio of 1.01, SD = 0.39, r = 0.93, n = 118), and the second group includes 25 other drugs for which the predicted and experimental V(ss) differ by a factor larger than two (average ratio of 1.32, SD = 1.74, r = 0.42, n = 29). Thus, additional relevant distribution processes were neglected in predicting V(ss) of drugs of the second group. This was true especially in the case of some cationic-amphiphilic bases. The present study is the first attempt to develop and validate a mechanistic distribution model for predicting rat and human V(ss) of drugs prior to in vivo studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
jiayou发布了新的文献求助10
刚刚
陈早早发布了新的文献求助10
刚刚
1秒前
qiushui发布了新的文献求助10
1秒前
1秒前
xiaowen发布了新的文献求助10
1秒前
汉堡包应助无奈世立采纳,获得30
1秒前
愿好完成签到,获得积分10
1秒前
2秒前
买瓜吗发布了新的文献求助10
2秒前
无私迎海发布了新的文献求助10
3秒前
研友_n0DQAn发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
yvonne关注了科研通微信公众号
5秒前
逸风望发布了新的文献求助10
5秒前
5秒前
ysx关闭了ysx文献求助
5秒前
5秒前
爆米花应助陈早早采纳,获得10
6秒前
愉快的芒果完成签到,获得积分10
6秒前
7秒前
小蘑菇应助等待薯片采纳,获得10
8秒前
8秒前
8秒前
情怀应助栗子采纳,获得20
8秒前
桐桐应助啦啦小牛采纳,获得10
8秒前
Owen应助这道题没有解采纳,获得10
8秒前
SciGPT应助上杉绘梨衣采纳,获得10
8秒前
9秒前
9秒前
丘比特应助lyznbhh采纳,获得10
9秒前
9秒前
那里一个人都没有完成签到,获得积分10
10秒前
10秒前
张成协完成签到,获得积分10
10秒前
鸽子完成签到,获得积分10
11秒前
穆仰发布了新的文献求助10
11秒前
magicyang完成签到,获得积分10
11秒前
spc68应助jaya采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709599
求助须知:如何正确求助?哪些是违规求助? 5195670
关于积分的说明 15257552
捐赠科研通 4862316
什么是DOI,文献DOI怎么找? 2610036
邀请新用户注册赠送积分活动 1560401
关于科研通互助平台的介绍 1518089