Prediction of Pharmacokinetics Prior to In Vivo Studies. 1. Mechanism‐Based Prediction of Volume of Distribution

体内 亲脂性 分配量 药代动力学 化学 分布(数学) 配送量 体积热力学 分配系数 药理学 色谱法 数学 生物化学 热力学 生物 物理 数学分析 生物技术
作者
Patrick Poulin,Frank‐Peter Theil
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:91 (1): 129-156 被引量:502
标识
DOI:10.1002/jps.10005
摘要

In drug discovery and nonclinical development the volume of distribution at steady state (V(ss)) of each novel drug candidate is commonly determined under in vivo conditions. Therefore, it is of interest to predict V(ss) without conducting in vivo studies. The traditional description of V(ss) corresponds to the sum of the products of each tissue:plasma partition coefficient (P(t:p)) and the respective tissue volume in addition to the plasma volume. Because data on volumes of tissues and plasma are available in the literature for mammals, the other input parameters needed to estimate V(ss) are the P(t:p)'s, which can potentially be predicted with established tissue composition-based equations. In vitro data on drug lipophilicity and plasma protein binding are the input parameters used in these equations. Such a mechanism-based approach would be particularly useful to provide first-cut estimates of V(ss) prior to any in vivo studies and to explore potential unexpected deviations between sets of predicted and in vivo V(ss) data, when the in vivo data become available during the drug development process. The objective of the present study was to use tissue composition-based equations to predict rat and human V(ss) prior to in vivo studies for 123 structurally unrelated compounds (acids, bases, and neutrals). The predicted data were compared with in vivo data obtained from the literature or at Roche. Overall, the average ratio of predicted-to-experimental rat and human V(ss) values was 1.06 (SD = 0.817, r = 0.78, n = 147). In fact, 80% of all predicted values were within a factor of two of the corresponding experimental values. The drugs can therefore be separated into two groups. The first group contains 98 drugs for which the predicted V(ss) were within a factor of two of those experimentally determined (average ratio of 1.01, SD = 0.39, r = 0.93, n = 118), and the second group includes 25 other drugs for which the predicted and experimental V(ss) differ by a factor larger than two (average ratio of 1.32, SD = 1.74, r = 0.42, n = 29). Thus, additional relevant distribution processes were neglected in predicting V(ss) of drugs of the second group. This was true especially in the case of some cationic-amphiphilic bases. The present study is the first attempt to develop and validate a mechanistic distribution model for predicting rat and human V(ss) of drugs prior to in vivo studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccr02完成签到 ,获得积分10
1秒前
Notorious发布了新的文献求助10
2秒前
李爱国应助lili采纳,获得10
2秒前
洁净的静芙完成签到,获得积分10
3秒前
YaPoo完成签到,获得积分10
3秒前
平常的不评完成签到,获得积分10
4秒前
5秒前
顾矜应助马上飞上宇宙采纳,获得10
6秒前
12345完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Zeno完成签到 ,获得积分10
7秒前
8秒前
9秒前
南瓜猪猪头完成签到 ,获得积分10
9秒前
9秒前
神经哇发布了新的文献求助10
10秒前
大个应助youjiang采纳,获得10
10秒前
11秒前
schuang完成签到,获得积分10
11秒前
玖玖柒idol完成签到,获得积分10
11秒前
科研通AI2S应助奥利奥采纳,获得10
11秒前
super发布了新的文献求助30
11秒前
凯文发布了新的文献求助10
13秒前
13秒前
14秒前
lili发布了新的文献求助10
14秒前
wzy5508完成签到 ,获得积分10
14秒前
沐一完成签到,获得积分10
15秒前
hahahala发布了新的文献求助30
15秒前
王华瑞发布了新的文献求助10
16秒前
派大猪咪发布了新的文献求助10
16秒前
梁羽生发布了新的文献求助10
16秒前
史迪仔完成签到,获得积分20
16秒前
16秒前
17秒前
思路三完成签到,获得积分20
17秒前
18秒前
星辰大海应助嘟嘟大魔王采纳,获得10
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269697
求助须知:如何正确求助?哪些是违规求助? 2909389
关于积分的说明 8348727
捐赠科研通 2579597
什么是DOI,文献DOI怎么找? 1402965
科研通“疑难数据库(出版商)”最低求助积分说明 655582
邀请新用户注册赠送积分活动 634856