Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations

化学 电解质 溶剂化 过氧化物 二甲氧基乙烷 分解 溶剂 化学物理 计算化学 物理化学 无机化学 有机化学 电极
作者
Nitin Kumar,Maxwell D. Radin,Brandon C. Wood,Tadashi Ogitsu,Donald J. Siegel
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:119 (17): 9050-9060 被引量:36
标识
DOI:10.1021/acs.jpcc.5b00256
摘要

A viable Li/O2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. Recent experiments suggest that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li2O2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), on surfaces of Li2O2. Comparisons are made between the two predominant Li2O2 surface charge states by calculating decomposition pathways on peroxide-terminated (O22–) and superoxide-terminated (O21–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH–). The remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li2O2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分20
刚刚
1秒前
时生111完成签到 ,获得积分10
1秒前
kb发布了新的文献求助10
2秒前
dafwfwaf完成签到,获得积分20
2秒前
Snow完成签到 ,获得积分10
3秒前
3秒前
CC发布了新的文献求助10
3秒前
小苏打完成签到,获得积分10
4秒前
Xiaoxiao应助程琳采纳,获得10
4秒前
ycc完成签到 ,获得积分10
4秒前
畏寒的北完成签到,获得积分10
5秒前
爆米花应助单纯的雅香采纳,获得10
5秒前
俭朴的玉兰完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
adazbd发布了新的文献求助10
7秒前
Jenny应助木头人采纳,获得10
7秒前
ATAYA完成签到,获得积分10
8秒前
8秒前
畏寒的北发布了新的文献求助10
8秒前
8秒前
9秒前
地下室没有鬼完成签到 ,获得积分10
9秒前
whh123完成签到 ,获得积分10
9秒前
天天快乐应助空禅yew采纳,获得10
10秒前
在水一方应助开心采纳,获得10
11秒前
Akim应助王w采纳,获得10
11秒前
towerman发布了新的文献求助10
11秒前
畅快平蓝完成签到,获得积分10
11秒前
大棒槌发布了新的文献求助10
12秒前
12秒前
Ann完成签到,获得积分10
12秒前
今今发布了新的文献求助10
13秒前
123123完成签到 ,获得积分10
13秒前
SciGPT应助伊酒采纳,获得10
14秒前
何糖发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808