Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies.

自尊 心理学 焦虑 萧条(经济学) 适度 临床心理学 纵向研究 心理干预 脆弱性(计算) 发展心理学 精神科 医学 社会心理学 宏观经济学 病理 经济 计算机科学 计算机安全
作者
Julia F. Sowislo,Ulrich Orth
出处
期刊:Psychological Bulletin [American Psychological Association]
卷期号:139 (1): 213-240 被引量:1759
标识
DOI:10.1037/a0028931
摘要

Low self-esteem and depression are strongly related, but there is not yet consistent evidence on the nature of the relation. Whereas the vulnerability model states that low self-esteem contributes to depression, the scar model states that depression erodes self-esteem. Furthermore, it is unknown whether the models are specific for depression or whether they are also valid for anxiety. We evaluated the vulnerability and scar models of low self-esteem and depression, and low self-esteem and anxiety, by meta-analyzing the available longitudinal data (covering 77 studies on depression and 18 studies on anxiety). The mean age of the samples ranged from childhood to old age. In the analyses, we used a random-effects model and examined prospective effects between the variables, controlling for prior levels of the predicted variables. For depression, the findings supported the vulnerability model: The effect of self-esteem on depression (β = -.16) was significantly stronger than the effect of depression on self-esteem (β = -.08). In contrast, the effects between low self-esteem and anxiety were relatively balanced: Self-esteem predicted anxiety with β = -.10, and anxiety predicted self-esteem with β = -.08. Moderator analyses were conducted for the effect of low self-esteem on depression; these suggested that the effect is not significantly influenced by gender, age, measures of self-esteem and depression, or time lag between assessments. If future research supports the hypothesized causality of the vulnerability effect of low self-esteem on depression, interventions aimed at increasing self-esteem might be useful in reducing the risk of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助占瑾瑜采纳,获得10
刚刚
勤劳篮球完成签到,获得积分20
1秒前
顺顺完成签到,获得积分20
1秒前
1秒前
2秒前
3秒前
Lucas应助He采纳,获得10
3秒前
huahua发布了新的文献求助10
6秒前
tianmeng发布了新的文献求助10
6秒前
cctv18应助joe采纳,获得30
7秒前
Ai香香完成签到,获得积分0
9秒前
9秒前
9秒前
去庐山看雪完成签到 ,获得积分10
9秒前
七分饱完成签到,获得积分10
12秒前
taotao发布了新的文献求助10
13秒前
zuanyhou应助风音采纳,获得10
13秒前
13秒前
tianmeng完成签到,获得积分10
14秒前
weiyichen关注了科研通微信公众号
17秒前
17秒前
宜醉宜游宜睡应助huahua采纳,获得10
18秒前
迹K发布了新的文献求助10
18秒前
18秒前
21秒前
完美世界应助taotao采纳,获得10
21秒前
23秒前
大模型应助Neuro_dan采纳,获得80
25秒前
美好斓发布了新的文献求助10
26秒前
GT完成签到,获得积分10
28秒前
30秒前
zho应助内向的哈密瓜采纳,获得10
30秒前
丘比特应助无奈梦岚采纳,获得10
31秒前
风音发布了新的文献求助10
31秒前
小Z顺利毕业完成签到,获得积分10
31秒前
纱夏完成签到,获得积分10
34秒前
34秒前
37秒前
wadhehyz发布了新的文献求助10
39秒前
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247668
求助须知:如何正确求助?哪些是违规求助? 2890943
关于积分的说明 8265433
捐赠科研通 2559211
什么是DOI,文献DOI怎么找? 1387967
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627505