An efficient encoding algorithm for vector quantization based on subvector technique

Linde–Buzo–Gray算法 代码本 矢量量化 算法 数学 计算复杂性理论 失真(音乐) 最近邻搜索 k-最近邻算法 编码(内存) 搜索算法 学习矢量量化 模式识别(心理学) 计算机科学 人工智能 计算机网络 带宽(计算) 放大器
作者
Jeng‐Shyang Pan,Zhe‐Ming Lu,Sun Sheng-he
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:12 (3): 265-270 被引量:100
标识
DOI:10.1109/tip.2003.810587
摘要

In this paper, a new and fast encoding algorithm for vector quantization is presented. This algorithm makes full use of two characteristics of a vector: the sum and the variance. A vector is separated into two subvectors: one is composed of the first half of vector components and the other consists of the remaining vector components. Three inequalities based on the sums and variances of a vector and its two subvectors components are introduced to reject those codewords that are impossible to be the nearest codeword, thereby saving a great deal of computational time, while introducing no extra distortion compared to the conventional full search algorithm. The simulation results show that the proposed algorithm is faster than the equal-average nearest neighbor search (ENNS), the improved ENNS, the equal-average equal-variance nearest neighbor search (EENNS) and the improved EENNS algorithms. Comparing with the improved EENNS algorithm, the proposed algorithm reduces the computational time and the number of distortion calculations by 2.4% to 6% and 20.5% to 26.8%, respectively. The average improvements of the computational time and the number of distortion calculations are 4% and 24.6% for the codebook sizes of 128 to 1024, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助陈123采纳,获得10
1秒前
好旺完成签到,获得积分10
2秒前
2秒前
小二郎应助半凡采纳,获得10
2秒前
Coral完成签到,获得积分10
2秒前
李健的粉丝团团长应助lhx采纳,获得10
3秒前
独特平灵发布了新的文献求助10
3秒前
3秒前
3秒前
艾小晞发布了新的文献求助10
3秒前
Ava应助五五五采纳,获得10
3秒前
orixero应助小毛线采纳,获得10
3秒前
浮游应助再煎熬采纳,获得10
4秒前
4秒前
4秒前
4秒前
samuel发布了新的文献求助10
4秒前
毕长富完成签到,获得积分10
5秒前
5秒前
科研通AI6应助StarSilverSaint采纳,获得30
5秒前
5秒前
酷波er应助贪玩嘉懿采纳,获得10
5秒前
迷走姑娘完成签到,获得积分10
5秒前
科研通AI6应助朱志伟采纳,获得10
5秒前
无辜凡完成签到,获得积分20
5秒前
路过蜻蜓发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
luhui发布了新的文献求助10
7秒前
7秒前
7秒前
852应助xh采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
Alex完成签到,获得积分10
9秒前
9秒前
无花果应助yyydd采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088