Normal Development of Mice and Unimpaired Cell Adhesion/Cell Motility/Actin-based Cytoskeleton without Compensatory Up-regulation of Ezrin or Radixin in Moesin Gene Knockout

莫辛 放射毒素 埃兹林 细胞生物学 细胞骨架 生物 细胞 遗传学
作者
Yoshinori Doi,Mikio Furuse,Shigenobu Yonemura,Satoru Ishihara,Hiroshi Takano,Tetsuo Noda,Shöichiro Tsukita,Sachiko Tsukita
出处
期刊:Journal of Biological Chemistry [Elsevier]
卷期号:274 (4): 2315-2321 被引量:167
标识
DOI:10.1074/jbc.274.4.2315
摘要

Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level. Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level. ezrin/radixin/moesin embryonic stem monoclonal antibody polyclonal antibody kilobase(s) splicing acceptor polyadenylation signal base pair(s). Three closely related proteins, ezrin, radixin, and moesin constitute a gene family called the ERM1 family. Ezrin, radixin, and moesin were identified in different directions (1Bretscher A. J. Cell Biol. 1983; 97: 425-432Crossref PubMed Scopus (217) Google Scholar, 2Pakkanen R. Hedman K. Turunen O. Wahlström T. Vaheri A. J. Histochem. Cytochem. 1987; 35: 809-816Crossref PubMed Scopus (53) Google Scholar, 3Bretscher A. J. Cell Biol. 1989; 108: 921-930Crossref PubMed Scopus (334) Google Scholar, 4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 5Hunter T. Cooper J.A. Cell. 1981; 24: 741-752Abstract Full Text PDF PubMed Scopus (389) Google Scholar, 6Tsukita S. Hieda V. Tsukita S. J. Cell Biol. 1989; 108: 2369-2382Crossref PubMed Scopus (155) Google Scholar, 7Lankes W.T. Griesmacher A. Grünwald J. Schwartz-Albiez R. Keller R. Biochem. J. 1988; 251: 831-842Crossref PubMed Scopus (100) Google Scholar), but isolation and sequencing of their cDNAs revealed that they were closely related (amino acid sequence identity of 70–80% in the mouse) (8Gould K.L. Bretscher A. Esch F.S. Hunter T. EMBO J. 1989; 8: 4133-4142Crossref PubMed Scopus (207) Google Scholar, 9Turunen O. Winqvist R. Pakkanen R. Grzeschik K.H. Wahlström T. Vaheri A. J. Biol. Chem. 1989; 264: 16727-16732Abstract Full Text PDF PubMed Google Scholar, 10Funayama N. Nagafuchi A. Sato N. Tsukita S. Tsukita S. J. Cell Biol. 1991; 115: 1039-1048Crossref PubMed Scopus (137) Google Scholar, 11Sato N. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Sci. 1992; 103: 131-143PubMed Google Scholar, 12Lankes W.T. Furthmayr H. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 8297-8301Crossref PubMed Scopus (211) Google Scholar). Independently of the lines of study on ERM proteins, another ERM-like protein was identified as a tumor suppressor or hereditary neurofibromatosis type 2 and named merlin (moesin/ezrin/radixin-like protein) or schwannomin (13Rouleau G.A. Merel P. Lutchman M. Sanson M. Zucman J. Marineau C. Hoang-Xuan K. Demczuk S. Desmaze C. Plougastel B. Pulst S.M. Lenoir G. Bijlsma E. Fashold R. Dumanski J. de Jong P. Parry D. Eldrige R. Aurias A. Delattre O. Thomas G. Nature. 1993; 363: 515-521Crossref PubMed Scopus (1181) Google Scholar, 14Trofatter J.A. MacCollin M.M. Rutter J.L. Murrell J.R. Duyao M.P. Parry D.M. Eldridge R. Kley N. Menon A.G. Pulaski K. Haase V.H. Ambrose C.M. Munroe D.M. Bove C. Haines J.L. Martuza R.L. MacDonald M.E. Seizinger B.R. Short M.P. Buckler A.J. Gusella J.F. Cell. 1993; 72: 791-800Abstract Full Text PDF PubMed Scopus (1088) Google Scholar).It is now widely accepted that ERM proteins function as general cross-linkers between plasma membranes and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). The highly conserved NH2-terminal half of ERM proteins directly binds to the cytoplasmic domains of integral membrane proteins such as CD44, CD43, ICAM-1, and ICAM-2 (20Yonemura S. Nagafuchi A. Sato N. Tsukita S. J. Cell Biol. 1993; 120: 437-449Crossref PubMed Scopus (131) Google Scholar, 21Tsukita S. Oishi K. Sato N. Sagara J. Kawai A. Tsukita S. J. Cell Biol. 1994; 126: 391-401Crossref PubMed Scopus (677) Google Scholar, 22Helander T.S. Carpén O. Turunen O. Kovanen P.E. Vaheri A. Timonen T. Nature. 1996; 382: 265-268Crossref PubMed Scopus (200) Google Scholar, 23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 24Yonemura S. Hirao M. Doi Y. Takahashi N. Kondo T. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 885-895Crossref PubMed Scopus (503) Google Scholar). On the other hand, ERM proteins directly interact with actin filaments (25Turunen O. Wahlström T. Vaheri A. J. Cell Biol. 1994; 126: 1445-1453Crossref PubMed Scopus (346) Google Scholar, 26Pestonjamasp K. Amieva M.R. Strassel C.P. Nauseef W.M. Furthmayr H. Luna E.J. Mol. Biol. Cell. 1995; 6: 247-259Crossref PubMed Scopus (154) Google Scholar, 27Roy C. Martin M. Mangeat P. J. Biol. Chem. 1997; 272: 20088-20095Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 28Martin M. Roy C. Montcourrier P. Sahuquet A. Mangeat P. Mol. Biol. Cell. 1997; 8: 1543-1557Crossref PubMed Scopus (55) Google Scholar). The co-existence of plasma membrane- and actin filament-binding domains in individual molecules may allow ERM proteins to function as plasma membrane/actin filament cross-linkers. Furthermore, ERM proteins are also thought to be involved in plasma membrane/actin filament cross-linkage through hetero- and/or homo-dimerization (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 32Magendantz M. Henry M.D. Lander A. Solomon F. J. Biol. Chem. 1995; 270: 25324-25327Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) and through binding to EBP (ERM-binding phosphoprotein) 50/NHE-RF (regulatory cofactor of Na+-H+ exchanger) (33Reczek D. Berryman M. Bretscher A. J. Cell Biol. 1997; 139: 169-179Crossref PubMed Scopus (516) Google Scholar, 34Weinman E.J. Steplock D. Wang Y. Shenolikar S. J. Clin. Invest. 1995; 95: 2143-2149Crossref PubMed Scopus (310) Google Scholar). There is accumulating evidence that the cross-linking activity of ERM proteins is regulated by the Rho-dependent signaling pathway through binding to Rho-GDP dissociation inhibitor and/or Rho-dependent phosphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar).One of the important questions regarding ERM proteins that have not yet been addressed is the extent to which ezrin, radixin, and moesin are functionally redundant. Targeted disruption of ERM protein genes would be one of the most direct ways to approach this issue. Among the ERM proteins, we expected moesin to be rather functionally unique, partly because this molecule lacks the polyproline stretch found in both ezrin and radixin and partly because only moesin is not tyrosine phosphorylated by the epidermal growth factor receptor (39Franck Z. Gary R. Bretscher A. J. Cell Sci. 1993; 105: 219-231Crossref PubMed Google Scholar). Therefore, to address the redundancy problem in ERM proteins we generated mice with a targeted null mutation of the moesin gene located on the X chromosome.DISCUSSIONERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar).To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar).The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar).Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level.In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. Three closely related proteins, ezrin, radixin, and moesin constitute a gene family called the ERM1 family. Ezrin, radixin, and moesin were identified in different directions (1Bretscher A. J. Cell Biol. 1983; 97: 425-432Crossref PubMed Scopus (217) Google Scholar, 2Pakkanen R. Hedman K. Turunen O. Wahlström T. Vaheri A. J. Histochem. Cytochem. 1987; 35: 809-816Crossref PubMed Scopus (53) Google Scholar, 3Bretscher A. J. Cell Biol. 1989; 108: 921-930Crossref PubMed Scopus (334) Google Scholar, 4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 5Hunter T. Cooper J.A. Cell. 1981; 24: 741-752Abstract Full Text PDF PubMed Scopus (389) Google Scholar, 6Tsukita S. Hieda V. Tsukita S. J. Cell Biol. 1989; 108: 2369-2382Crossref PubMed Scopus (155) Google Scholar, 7Lankes W.T. Griesmacher A. Grünwald J. Schwartz-Albiez R. Keller R. Biochem. J. 1988; 251: 831-842Crossref PubMed Scopus (100) Google Scholar), but isolation and sequencing of their cDNAs revealed that they were closely related (amino acid sequence identity of 70–80% in the mouse) (8Gould K.L. Bretscher A. Esch F.S. Hunter T. EMBO J. 1989; 8: 4133-4142Crossref PubMed Scopus (207) Google Scholar, 9Turunen O. Winqvist R. Pakkanen R. Grzeschik K.H. Wahlström T. Vaheri A. J. Biol. Chem. 1989; 264: 16727-16732Abstract Full Text PDF PubMed Google Scholar, 10Funayama N. Nagafuchi A. Sato N. Tsukita S. Tsukita S. J. Cell Biol. 1991; 115: 1039-1048Crossref PubMed Scopus (137) Google Scholar, 11Sato N. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Sci. 1992; 103: 131-143PubMed Google Scholar, 12Lankes W.T. Furthmayr H. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 8297-8301Crossref PubMed Scopus (211) Google Scholar). Independently of the lines of study on ERM proteins, another ERM-like protein was identified as a tumor suppressor or hereditary neurofibromatosis type 2 and named merlin (moesin/ezrin/radixin-like protein) or schwannomin (13Rouleau G.A. Merel P. Lutchman M. Sanson M. Zucman J. Marineau C. Hoang-Xuan K. Demczuk S. Desmaze C. Plougastel B. Pulst S.M. Lenoir G. Bijlsma E. Fashold R. Dumanski J. de Jong P. Parry D. Eldrige R. Aurias A. Delattre O. Thomas G. Nature. 1993; 363: 515-521Crossref PubMed Scopus (1181) Google Scholar, 14Trofatter J.A. MacCollin M.M. Rutter J.L. Murrell J.R. Duyao M.P. Parry D.M. Eldridge R. Kley N. Menon A.G. Pulaski K. Haase V.H. Ambrose C.M. Munroe D.M. Bove C. Haines J.L. Martuza R.L. MacDonald M.E. Seizinger B.R. Short M.P. Buckler A.J. Gusella J.F. Cell. 1993; 72: 791-800Abstract Full Text PDF PubMed Scopus (1088) Google Scholar). It is now widely accepted that ERM proteins function as general cross-linkers between plasma membranes and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). The highly conserved NH2-terminal half of ERM proteins directly binds to the cytoplasmic domains of integral membrane proteins such as CD44, CD43, ICAM-1, and ICAM-2 (20Yonemura S. Nagafuchi A. Sato N. Tsukita S. J. Cell Biol. 1993; 120: 437-449Crossref PubMed Scopus (131) Google Scholar, 21Tsukita S. Oishi K. Sato N. Sagara J. Kawai A. Tsukita S. J. Cell Biol. 1994; 126: 391-401Crossref PubMed Scopus (677) Google Scholar, 22Helander T.S. Carpén O. Turunen O. Kovanen P.E. Vaheri A. Timonen T. Nature. 1996; 382: 265-268Crossref PubMed Scopus (200) Google Scholar, 23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 24Yonemura S. Hirao M. Doi Y. Takahashi N. Kondo T. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 885-895Crossref PubMed Scopus (503) Google Scholar). On the other hand, ERM proteins directly interact with actin filaments (25Turunen O. Wahlström T. Vaheri A. J. Cell Biol. 1994; 126: 1445-1453Crossref PubMed Scopus (346) Google Scholar, 26Pestonjamasp K. Amieva M.R. Strassel C.P. Nauseef W.M. Furthmayr H. Luna E.J. Mol. Biol. Cell. 1995; 6: 247-259Crossref PubMed Scopus (154) Google Scholar, 27Roy C. Martin M. Mangeat P. J. Biol. Chem. 1997; 272: 20088-20095Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 28Martin M. Roy C. Montcourrier P. Sahuquet A. Mangeat P. Mol. Biol. Cell. 1997; 8: 1543-1557Crossref PubMed Scopus (55) Google Scholar). The co-existence of plasma membrane- and actin filament-binding domains in individual molecules may allow ERM proteins to function as plasma membrane/actin filament cross-linkers. Furthermore, ERM proteins are also thought to be involved in plasma membrane/actin filament cross-linkage through hetero- and/or homo-dimerization (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 32Magendantz M. Henry M.D. Lander A. Solomon F. J. Biol. Chem. 1995; 270: 25324-25327Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) and through binding to EBP (ERM-binding phosphoprotein) 50/NHE-RF (regulatory cofactor of Na+-H+ exchanger) (33Reczek D. Berryman M. Bretscher A. J. Cell Biol. 1997; 139: 169-179Crossref PubMed Scopus (516) Google Scholar, 34Weinman E.J. Steplock D. Wang Y. Shenolikar S. J. Clin. Invest. 1995; 95: 2143-2149Crossref PubMed Scopus (310) Google Scholar). There is accumulating evidence that the cross-linking activity of ERM proteins is regulated by the Rho-dependent signaling pathway through binding to Rho-GDP dissociation inhibitor and/or Rho-dependent phosphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). One of the important questions regarding ERM proteins that have not yet been addressed is the extent to which ezrin, radixin, and moesin are functionally redundant. Targeted disruption of ERM protein genes would be one of the most direct ways to approach this issue. Among the ERM proteins, we expected moesin to be rather functionally unique, partly because this molecule lacks the polyproline stretch found in both ezrin and radixin and partly because only moesin is not tyrosine phosphorylated by the epidermal growth factor receptor (39Franck Z. Gary R. Bretscher A. J. Cell Sci. 1993; 105: 219-231Crossref PubMed Google Scholar). Therefore, to address the redundancy problem in ERM proteins we generated mice with a targeted null mutation of the moesin gene located on the X chromosome. DISCUSSIONERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar).To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar).The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar).Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level.In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. ERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar). To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar). The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar). Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level. In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. We thank Dr. S. Nishikawa (Department of Molecular Genetics, Kyoto University) for helpful discussions. We thank Dr. T. Murata and Dr. F. Ushikubi (Department of Cell Pharmacology, Kyoto University) for technical advice regarding platelet aggregation assay. Y. Doi thanks Dr. Y. Matsuzawa (Second Department of Internal Medicine, Osaka University) for providing him with the opportunity for this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
找不到文献关注了科研通微信公众号
刚刚
zshhay完成签到 ,获得积分10
1秒前
皖医梁朝伟完成签到 ,获得积分10
2秒前
2秒前
Cc关闭了Cc文献求助
3秒前
3秒前
hz完成签到,获得积分10
3秒前
lili完成签到,获得积分20
4秒前
dd完成签到,获得积分10
4秒前
畅快不平发布了新的文献求助10
4秒前
李某完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
XPR发布了新的文献求助10
7秒前
7秒前
费费仙女发布了新的文献求助10
7秒前
8秒前
小林同学发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
研友_VZG7GZ应助畅快不平采纳,获得10
11秒前
guard发布了新的文献求助10
11秒前
12秒前
14秒前
zz发布了新的文献求助10
14秒前
14秒前
不吃西瓜发布了新的文献求助10
14秒前
初空月儿发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
科研通AI2S应助研友_8KX15L采纳,获得10
18秒前
禹代秋完成签到,获得积分10
18秒前
快乐的医学生完成签到,获得积分10
19秒前
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226