Normal Development of Mice and Unimpaired Cell Adhesion/Cell Motility/Actin-based Cytoskeleton without Compensatory Up-regulation of Ezrin or Radixin in Moesin Gene Knockout

莫辛 放射毒素 埃兹林 细胞生物学 细胞骨架 生物 细胞 遗传学
作者
Yoshinori Doi,Mikio Furuse,Shigenobu Yonemura,Satoru Ishihara,Hiroshi Takano,Tetsuo Noda,Shöichiro Tsukita,Sachiko Tsukita
出处
期刊:Journal of Biological Chemistry [Elsevier BV]
卷期号:274 (4): 2315-2321 被引量:167
标识
DOI:10.1074/jbc.274.4.2315
摘要

Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level. Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level. ezrin/radixin/moesin embryonic stem monoclonal antibody polyclonal antibody kilobase(s) splicing acceptor polyadenylation signal base pair(s). Three closely related proteins, ezrin, radixin, and moesin constitute a gene family called the ERM1 family. Ezrin, radixin, and moesin were identified in different directions (1Bretscher A. J. Cell Biol. 1983; 97: 425-432Crossref PubMed Scopus (217) Google Scholar, 2Pakkanen R. Hedman K. Turunen O. Wahlström T. Vaheri A. J. Histochem. Cytochem. 1987; 35: 809-816Crossref PubMed Scopus (53) Google Scholar, 3Bretscher A. J. Cell Biol. 1989; 108: 921-930Crossref PubMed Scopus (334) Google Scholar, 4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 5Hunter T. Cooper J.A. Cell. 1981; 24: 741-752Abstract Full Text PDF PubMed Scopus (389) Google Scholar, 6Tsukita S. Hieda V. Tsukita S. J. Cell Biol. 1989; 108: 2369-2382Crossref PubMed Scopus (155) Google Scholar, 7Lankes W.T. Griesmacher A. Grünwald J. Schwartz-Albiez R. Keller R. Biochem. J. 1988; 251: 831-842Crossref PubMed Scopus (100) Google Scholar), but isolation and sequencing of their cDNAs revealed that they were closely related (amino acid sequence identity of 70–80% in the mouse) (8Gould K.L. Bretscher A. Esch F.S. Hunter T. EMBO J. 1989; 8: 4133-4142Crossref PubMed Scopus (207) Google Scholar, 9Turunen O. Winqvist R. Pakkanen R. Grzeschik K.H. Wahlström T. Vaheri A. J. Biol. Chem. 1989; 264: 16727-16732Abstract Full Text PDF PubMed Google Scholar, 10Funayama N. Nagafuchi A. Sato N. Tsukita S. Tsukita S. J. Cell Biol. 1991; 115: 1039-1048Crossref PubMed Scopus (137) Google Scholar, 11Sato N. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Sci. 1992; 103: 131-143PubMed Google Scholar, 12Lankes W.T. Furthmayr H. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 8297-8301Crossref PubMed Scopus (211) Google Scholar). Independently of the lines of study on ERM proteins, another ERM-like protein was identified as a tumor suppressor or hereditary neurofibromatosis type 2 and named merlin (moesin/ezrin/radixin-like protein) or schwannomin (13Rouleau G.A. Merel P. Lutchman M. Sanson M. Zucman J. Marineau C. Hoang-Xuan K. Demczuk S. Desmaze C. Plougastel B. Pulst S.M. Lenoir G. Bijlsma E. Fashold R. Dumanski J. de Jong P. Parry D. Eldrige R. Aurias A. Delattre O. Thomas G. Nature. 1993; 363: 515-521Crossref PubMed Scopus (1181) Google Scholar, 14Trofatter J.A. MacCollin M.M. Rutter J.L. Murrell J.R. Duyao M.P. Parry D.M. Eldridge R. Kley N. Menon A.G. Pulaski K. Haase V.H. Ambrose C.M. Munroe D.M. Bove C. Haines J.L. Martuza R.L. MacDonald M.E. Seizinger B.R. Short M.P. Buckler A.J. Gusella J.F. Cell. 1993; 72: 791-800Abstract Full Text PDF PubMed Scopus (1088) Google Scholar).It is now widely accepted that ERM proteins function as general cross-linkers between plasma membranes and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). The highly conserved NH2-terminal half of ERM proteins directly binds to the cytoplasmic domains of integral membrane proteins such as CD44, CD43, ICAM-1, and ICAM-2 (20Yonemura S. Nagafuchi A. Sato N. Tsukita S. J. Cell Biol. 1993; 120: 437-449Crossref PubMed Scopus (131) Google Scholar, 21Tsukita S. Oishi K. Sato N. Sagara J. Kawai A. Tsukita S. J. Cell Biol. 1994; 126: 391-401Crossref PubMed Scopus (677) Google Scholar, 22Helander T.S. Carpén O. Turunen O. Kovanen P.E. Vaheri A. Timonen T. Nature. 1996; 382: 265-268Crossref PubMed Scopus (200) Google Scholar, 23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 24Yonemura S. Hirao M. Doi Y. Takahashi N. Kondo T. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 885-895Crossref PubMed Scopus (503) Google Scholar). On the other hand, ERM proteins directly interact with actin filaments (25Turunen O. Wahlström T. Vaheri A. J. Cell Biol. 1994; 126: 1445-1453Crossref PubMed Scopus (346) Google Scholar, 26Pestonjamasp K. Amieva M.R. Strassel C.P. Nauseef W.M. Furthmayr H. Luna E.J. Mol. Biol. Cell. 1995; 6: 247-259Crossref PubMed Scopus (154) Google Scholar, 27Roy C. Martin M. Mangeat P. J. Biol. Chem. 1997; 272: 20088-20095Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 28Martin M. Roy C. Montcourrier P. Sahuquet A. Mangeat P. Mol. Biol. Cell. 1997; 8: 1543-1557Crossref PubMed Scopus (55) Google Scholar). The co-existence of plasma membrane- and actin filament-binding domains in individual molecules may allow ERM proteins to function as plasma membrane/actin filament cross-linkers. Furthermore, ERM proteins are also thought to be involved in plasma membrane/actin filament cross-linkage through hetero- and/or homo-dimerization (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 32Magendantz M. Henry M.D. Lander A. Solomon F. J. Biol. Chem. 1995; 270: 25324-25327Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) and through binding to EBP (ERM-binding phosphoprotein) 50/NHE-RF (regulatory cofactor of Na+-H+ exchanger) (33Reczek D. Berryman M. Bretscher A. J. Cell Biol. 1997; 139: 169-179Crossref PubMed Scopus (516) Google Scholar, 34Weinman E.J. Steplock D. Wang Y. Shenolikar S. J. Clin. Invest. 1995; 95: 2143-2149Crossref PubMed Scopus (310) Google Scholar). There is accumulating evidence that the cross-linking activity of ERM proteins is regulated by the Rho-dependent signaling pathway through binding to Rho-GDP dissociation inhibitor and/or Rho-dependent phosphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar).One of the important questions regarding ERM proteins that have not yet been addressed is the extent to which ezrin, radixin, and moesin are functionally redundant. Targeted disruption of ERM protein genes would be one of the most direct ways to approach this issue. Among the ERM proteins, we expected moesin to be rather functionally unique, partly because this molecule lacks the polyproline stretch found in both ezrin and radixin and partly because only moesin is not tyrosine phosphorylated by the epidermal growth factor receptor (39Franck Z. Gary R. Bretscher A. J. Cell Sci. 1993; 105: 219-231Crossref PubMed Google Scholar). Therefore, to address the redundancy problem in ERM proteins we generated mice with a targeted null mutation of the moesin gene located on the X chromosome.DISCUSSIONERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar).To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar).The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar).Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level.In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. Three closely related proteins, ezrin, radixin, and moesin constitute a gene family called the ERM1 family. Ezrin, radixin, and moesin were identified in different directions (1Bretscher A. J. Cell Biol. 1983; 97: 425-432Crossref PubMed Scopus (217) Google Scholar, 2Pakkanen R. Hedman K. Turunen O. Wahlström T. Vaheri A. J. Histochem. Cytochem. 1987; 35: 809-816Crossref PubMed Scopus (53) Google Scholar, 3Bretscher A. J. Cell Biol. 1989; 108: 921-930Crossref PubMed Scopus (334) Google Scholar, 4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 5Hunter T. Cooper J.A. Cell. 1981; 24: 741-752Abstract Full Text PDF PubMed Scopus (389) Google Scholar, 6Tsukita S. Hieda V. Tsukita S. J. Cell Biol. 1989; 108: 2369-2382Crossref PubMed Scopus (155) Google Scholar, 7Lankes W.T. Griesmacher A. Grünwald J. Schwartz-Albiez R. Keller R. Biochem. J. 1988; 251: 831-842Crossref PubMed Scopus (100) Google Scholar), but isolation and sequencing of their cDNAs revealed that they were closely related (amino acid sequence identity of 70–80% in the mouse) (8Gould K.L. Bretscher A. Esch F.S. Hunter T. EMBO J. 1989; 8: 4133-4142Crossref PubMed Scopus (207) Google Scholar, 9Turunen O. Winqvist R. Pakkanen R. Grzeschik K.H. Wahlström T. Vaheri A. J. Biol. Chem. 1989; 264: 16727-16732Abstract Full Text PDF PubMed Google Scholar, 10Funayama N. Nagafuchi A. Sato N. Tsukita S. Tsukita S. J. Cell Biol. 1991; 115: 1039-1048Crossref PubMed Scopus (137) Google Scholar, 11Sato N. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Sci. 1992; 103: 131-143PubMed Google Scholar, 12Lankes W.T. Furthmayr H. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 8297-8301Crossref PubMed Scopus (211) Google Scholar). Independently of the lines of study on ERM proteins, another ERM-like protein was identified as a tumor suppressor or hereditary neurofibromatosis type 2 and named merlin (moesin/ezrin/radixin-like protein) or schwannomin (13Rouleau G.A. Merel P. Lutchman M. Sanson M. Zucman J. Marineau C. Hoang-Xuan K. Demczuk S. Desmaze C. Plougastel B. Pulst S.M. Lenoir G. Bijlsma E. Fashold R. Dumanski J. de Jong P. Parry D. Eldrige R. Aurias A. Delattre O. Thomas G. Nature. 1993; 363: 515-521Crossref PubMed Scopus (1181) Google Scholar, 14Trofatter J.A. MacCollin M.M. Rutter J.L. Murrell J.R. Duyao M.P. Parry D.M. Eldridge R. Kley N. Menon A.G. Pulaski K. Haase V.H. Ambrose C.M. Munroe D.M. Bove C. Haines J.L. Martuza R.L. MacDonald M.E. Seizinger B.R. Short M.P. Buckler A.J. Gusella J.F. Cell. 1993; 72: 791-800Abstract Full Text PDF PubMed Scopus (1088) Google Scholar). It is now widely accepted that ERM proteins function as general cross-linkers between plasma membranes and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). The highly conserved NH2-terminal half of ERM proteins directly binds to the cytoplasmic domains of integral membrane proteins such as CD44, CD43, ICAM-1, and ICAM-2 (20Yonemura S. Nagafuchi A. Sato N. Tsukita S. J. Cell Biol. 1993; 120: 437-449Crossref PubMed Scopus (131) Google Scholar, 21Tsukita S. Oishi K. Sato N. Sagara J. Kawai A. Tsukita S. J. Cell Biol. 1994; 126: 391-401Crossref PubMed Scopus (677) Google Scholar, 22Helander T.S. Carpén O. Turunen O. Kovanen P.E. Vaheri A. Timonen T. Nature. 1996; 382: 265-268Crossref PubMed Scopus (200) Google Scholar, 23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 24Yonemura S. Hirao M. Doi Y. Takahashi N. Kondo T. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 885-895Crossref PubMed Scopus (503) Google Scholar). On the other hand, ERM proteins directly interact with actin filaments (25Turunen O. Wahlström T. Vaheri A. J. Cell Biol. 1994; 126: 1445-1453Crossref PubMed Scopus (346) Google Scholar, 26Pestonjamasp K. Amieva M.R. Strassel C.P. Nauseef W.M. Furthmayr H. Luna E.J. Mol. Biol. Cell. 1995; 6: 247-259Crossref PubMed Scopus (154) Google Scholar, 27Roy C. Martin M. Mangeat P. J. Biol. Chem. 1997; 272: 20088-20095Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 28Martin M. Roy C. Montcourrier P. Sahuquet A. Mangeat P. Mol. Biol. Cell. 1997; 8: 1543-1557Crossref PubMed Scopus (55) Google Scholar). The co-existence of plasma membrane- and actin filament-binding domains in individual molecules may allow ERM proteins to function as plasma membrane/actin filament cross-linkers. Furthermore, ERM proteins are also thought to be involved in plasma membrane/actin filament cross-linkage through hetero- and/or homo-dimerization (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 32Magendantz M. Henry M.D. Lander A. Solomon F. J. Biol. Chem. 1995; 270: 25324-25327Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) and through binding to EBP (ERM-binding phosphoprotein) 50/NHE-RF (regulatory cofactor of Na+-H+ exchanger) (33Reczek D. Berryman M. Bretscher A. J. Cell Biol. 1997; 139: 169-179Crossref PubMed Scopus (516) Google Scholar, 34Weinman E.J. Steplock D. Wang Y. Shenolikar S. J. Clin. Invest. 1995; 95: 2143-2149Crossref PubMed Scopus (310) Google Scholar). There is accumulating evidence that the cross-linking activity of ERM proteins is regulated by the Rho-dependent signaling pathway through binding to Rho-GDP dissociation inhibitor and/or Rho-dependent phosphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). One of the important questions regarding ERM proteins that have not yet been addressed is the extent to which ezrin, radixin, and moesin are functionally redundant. Targeted disruption of ERM protein genes would be one of the most direct ways to approach this issue. Among the ERM proteins, we expected moesin to be rather functionally unique, partly because this molecule lacks the polyproline stretch found in both ezrin and radixin and partly because only moesin is not tyrosine phosphorylated by the epidermal growth factor receptor (39Franck Z. Gary R. Bretscher A. J. Cell Sci. 1993; 105: 219-231Crossref PubMed Google Scholar). Therefore, to address the redundancy problem in ERM proteins we generated mice with a targeted null mutation of the moesin gene located on the X chromosome. DISCUSSIONERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar).To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar).The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar).Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level.In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. ERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar). To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar). The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar). Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level. In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. We thank Dr. S. Nishikawa (Department of Molecular Genetics, Kyoto University) for helpful discussions. We thank Dr. T. Murata and Dr. F. Ushikubi (Department of Cell Pharmacology, Kyoto University) for technical advice regarding platelet aggregation assay. Y. Doi thanks Dr. Y. Matsuzawa (Second Department of Internal Medicine, Osaka University) for providing him with the opportunity for this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得20
刚刚
柯一一应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
执葵发布了新的文献求助10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
热切菩萨应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
咔咔完成签到 ,获得积分10
1秒前
慕青应助mue采纳,获得10
1秒前
璨澄发布了新的文献求助10
2秒前
4秒前
7秒前
思源应助明天开始戒绿茶采纳,获得10
8秒前
9秒前
10秒前
俭朴的又菡完成签到,获得积分10
10秒前
小苹果发布了新的文献求助10
10秒前
大洋洋完成签到,获得积分10
10秒前
HKY发布了新的文献求助10
11秒前
13秒前
13秒前
东木应助执葵采纳,获得20
15秒前
AlwaysKim发布了新的文献求助10
15秒前
15秒前
16秒前
FashionBoy应助涵泽采纳,获得10
16秒前
mue发布了新的文献求助10
18秒前
18秒前
噜噜晓发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助CC采纳,获得10
20秒前
22秒前
顾矜应助duxiao采纳,获得10
22秒前
一切顺利完成签到,获得积分10
23秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382