已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Normal Development of Mice and Unimpaired Cell Adhesion/Cell Motility/Actin-based Cytoskeleton without Compensatory Up-regulation of Ezrin or Radixin in Moesin Gene Knockout

莫辛 放射毒素 埃兹林 细胞生物学 细胞骨架 生物 细胞 遗传学
作者
Yoshinori Doi,Mikio Furuse,Shigenobu Yonemura,Satoru Ishihara,Hiroshi Takano,Tetsuo Noda,Shöichiro Tsukita,Sachiko Tsukita
出处
期刊:Journal of Biological Chemistry [Elsevier BV]
卷期号:274 (4): 2315-2321 被引量:167
标识
DOI:10.1074/jbc.274.4.2315
摘要

Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level. Ezrin/radixin/moesin (ERM) proteins are general cross-linkers between the plasma membrane and actin filaments. Because their expression is regulated in a tissue-specific manner, each ERM protein has been proposed to have unique functions. On the other hand, experiments at the cellular level and in vitro have suggested their functional redundancy. To assess the possible unique functions of ERM proteins in vivo, the moesin gene located on the X chromosome was disrupted by gene targeting in embryonic stem cells. Male mice hemizygous for the mutation as well as homozygous females were completely devoid of moesin but developed normally and were fertile, with no obvious histological abnormalities in any of the tissues examined. In the tissues of the mutant mice, moesin completely disappeared without affecting the expression levels or subcellular distribution of ezrin and radixin. Also, in platelets, fibroblasts, and mast cells isolated from moesin-deficient mice, targeted disruption of the moesin gene did not affect their ERM-dependent functions, i.e. platelet aggregation, stress fiber/focal contact formation of fibroblasts, and microvillar formation of mast cells, without compensatory up-regulation of ezrin or radixin. These findings favor the notion that ERM proteins are functionally redundant at the cellular as well as the whole body level. ezrin/radixin/moesin embryonic stem monoclonal antibody polyclonal antibody kilobase(s) splicing acceptor polyadenylation signal base pair(s). Three closely related proteins, ezrin, radixin, and moesin constitute a gene family called the ERM1 family. Ezrin, radixin, and moesin were identified in different directions (1Bretscher A. J. Cell Biol. 1983; 97: 425-432Crossref PubMed Scopus (217) Google Scholar, 2Pakkanen R. Hedman K. Turunen O. Wahlström T. Vaheri A. J. Histochem. Cytochem. 1987; 35: 809-816Crossref PubMed Scopus (53) Google Scholar, 3Bretscher A. J. Cell Biol. 1989; 108: 921-930Crossref PubMed Scopus (334) Google Scholar, 4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 5Hunter T. Cooper J.A. Cell. 1981; 24: 741-752Abstract Full Text PDF PubMed Scopus (389) Google Scholar, 6Tsukita S. Hieda V. Tsukita S. J. Cell Biol. 1989; 108: 2369-2382Crossref PubMed Scopus (155) Google Scholar, 7Lankes W.T. Griesmacher A. Grünwald J. Schwartz-Albiez R. Keller R. Biochem. J. 1988; 251: 831-842Crossref PubMed Scopus (100) Google Scholar), but isolation and sequencing of their cDNAs revealed that they were closely related (amino acid sequence identity of 70–80% in the mouse) (8Gould K.L. Bretscher A. Esch F.S. Hunter T. EMBO J. 1989; 8: 4133-4142Crossref PubMed Scopus (207) Google Scholar, 9Turunen O. Winqvist R. Pakkanen R. Grzeschik K.H. Wahlström T. Vaheri A. J. Biol. Chem. 1989; 264: 16727-16732Abstract Full Text PDF PubMed Google Scholar, 10Funayama N. Nagafuchi A. Sato N. Tsukita S. Tsukita S. J. Cell Biol. 1991; 115: 1039-1048Crossref PubMed Scopus (137) Google Scholar, 11Sato N. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Sci. 1992; 103: 131-143PubMed Google Scholar, 12Lankes W.T. Furthmayr H. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 8297-8301Crossref PubMed Scopus (211) Google Scholar). Independently of the lines of study on ERM proteins, another ERM-like protein was identified as a tumor suppressor or hereditary neurofibromatosis type 2 and named merlin (moesin/ezrin/radixin-like protein) or schwannomin (13Rouleau G.A. Merel P. Lutchman M. Sanson M. Zucman J. Marineau C. Hoang-Xuan K. Demczuk S. Desmaze C. Plougastel B. Pulst S.M. Lenoir G. Bijlsma E. Fashold R. Dumanski J. de Jong P. Parry D. Eldrige R. Aurias A. Delattre O. Thomas G. Nature. 1993; 363: 515-521Crossref PubMed Scopus (1181) Google Scholar, 14Trofatter J.A. MacCollin M.M. Rutter J.L. Murrell J.R. Duyao M.P. Parry D.M. Eldridge R. Kley N. Menon A.G. Pulaski K. Haase V.H. Ambrose C.M. Munroe D.M. Bove C. Haines J.L. Martuza R.L. MacDonald M.E. Seizinger B.R. Short M.P. Buckler A.J. Gusella J.F. Cell. 1993; 72: 791-800Abstract Full Text PDF PubMed Scopus (1088) Google Scholar).It is now widely accepted that ERM proteins function as general cross-linkers between plasma membranes and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). The highly conserved NH2-terminal half of ERM proteins directly binds to the cytoplasmic domains of integral membrane proteins such as CD44, CD43, ICAM-1, and ICAM-2 (20Yonemura S. Nagafuchi A. Sato N. Tsukita S. J. Cell Biol. 1993; 120: 437-449Crossref PubMed Scopus (131) Google Scholar, 21Tsukita S. Oishi K. Sato N. Sagara J. Kawai A. Tsukita S. J. Cell Biol. 1994; 126: 391-401Crossref PubMed Scopus (677) Google Scholar, 22Helander T.S. Carpén O. Turunen O. Kovanen P.E. Vaheri A. Timonen T. Nature. 1996; 382: 265-268Crossref PubMed Scopus (200) Google Scholar, 23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 24Yonemura S. Hirao M. Doi Y. Takahashi N. Kondo T. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 885-895Crossref PubMed Scopus (503) Google Scholar). On the other hand, ERM proteins directly interact with actin filaments (25Turunen O. Wahlström T. Vaheri A. J. Cell Biol. 1994; 126: 1445-1453Crossref PubMed Scopus (346) Google Scholar, 26Pestonjamasp K. Amieva M.R. Strassel C.P. Nauseef W.M. Furthmayr H. Luna E.J. Mol. Biol. Cell. 1995; 6: 247-259Crossref PubMed Scopus (154) Google Scholar, 27Roy C. Martin M. Mangeat P. J. Biol. Chem. 1997; 272: 20088-20095Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 28Martin M. Roy C. Montcourrier P. Sahuquet A. Mangeat P. Mol. Biol. Cell. 1997; 8: 1543-1557Crossref PubMed Scopus (55) Google Scholar). The co-existence of plasma membrane- and actin filament-binding domains in individual molecules may allow ERM proteins to function as plasma membrane/actin filament cross-linkers. Furthermore, ERM proteins are also thought to be involved in plasma membrane/actin filament cross-linkage through hetero- and/or homo-dimerization (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 32Magendantz M. Henry M.D. Lander A. Solomon F. J. Biol. Chem. 1995; 270: 25324-25327Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) and through binding to EBP (ERM-binding phosphoprotein) 50/NHE-RF (regulatory cofactor of Na+-H+ exchanger) (33Reczek D. Berryman M. Bretscher A. J. Cell Biol. 1997; 139: 169-179Crossref PubMed Scopus (516) Google Scholar, 34Weinman E.J. Steplock D. Wang Y. Shenolikar S. J. Clin. Invest. 1995; 95: 2143-2149Crossref PubMed Scopus (310) Google Scholar). There is accumulating evidence that the cross-linking activity of ERM proteins is regulated by the Rho-dependent signaling pathway through binding to Rho-GDP dissociation inhibitor and/or Rho-dependent phosphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar).One of the important questions regarding ERM proteins that have not yet been addressed is the extent to which ezrin, radixin, and moesin are functionally redundant. Targeted disruption of ERM protein genes would be one of the most direct ways to approach this issue. Among the ERM proteins, we expected moesin to be rather functionally unique, partly because this molecule lacks the polyproline stretch found in both ezrin and radixin and partly because only moesin is not tyrosine phosphorylated by the epidermal growth factor receptor (39Franck Z. Gary R. Bretscher A. J. Cell Sci. 1993; 105: 219-231Crossref PubMed Google Scholar). Therefore, to address the redundancy problem in ERM proteins we generated mice with a targeted null mutation of the moesin gene located on the X chromosome.DISCUSSIONERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar).To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar).The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar).Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level.In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. Three closely related proteins, ezrin, radixin, and moesin constitute a gene family called the ERM1 family. Ezrin, radixin, and moesin were identified in different directions (1Bretscher A. J. Cell Biol. 1983; 97: 425-432Crossref PubMed Scopus (217) Google Scholar, 2Pakkanen R. Hedman K. Turunen O. Wahlström T. Vaheri A. J. Histochem. Cytochem. 1987; 35: 809-816Crossref PubMed Scopus (53) Google Scholar, 3Bretscher A. J. Cell Biol. 1989; 108: 921-930Crossref PubMed Scopus (334) Google Scholar, 4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 5Hunter T. Cooper J.A. Cell. 1981; 24: 741-752Abstract Full Text PDF PubMed Scopus (389) Google Scholar, 6Tsukita S. Hieda V. Tsukita S. J. Cell Biol. 1989; 108: 2369-2382Crossref PubMed Scopus (155) Google Scholar, 7Lankes W.T. Griesmacher A. Grünwald J. Schwartz-Albiez R. Keller R. Biochem. J. 1988; 251: 831-842Crossref PubMed Scopus (100) Google Scholar), but isolation and sequencing of their cDNAs revealed that they were closely related (amino acid sequence identity of 70–80% in the mouse) (8Gould K.L. Bretscher A. Esch F.S. Hunter T. EMBO J. 1989; 8: 4133-4142Crossref PubMed Scopus (207) Google Scholar, 9Turunen O. Winqvist R. Pakkanen R. Grzeschik K.H. Wahlström T. Vaheri A. J. Biol. Chem. 1989; 264: 16727-16732Abstract Full Text PDF PubMed Google Scholar, 10Funayama N. Nagafuchi A. Sato N. Tsukita S. Tsukita S. J. Cell Biol. 1991; 115: 1039-1048Crossref PubMed Scopus (137) Google Scholar, 11Sato N. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Sci. 1992; 103: 131-143PubMed Google Scholar, 12Lankes W.T. Furthmayr H. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 8297-8301Crossref PubMed Scopus (211) Google Scholar). Independently of the lines of study on ERM proteins, another ERM-like protein was identified as a tumor suppressor or hereditary neurofibromatosis type 2 and named merlin (moesin/ezrin/radixin-like protein) or schwannomin (13Rouleau G.A. Merel P. Lutchman M. Sanson M. Zucman J. Marineau C. Hoang-Xuan K. Demczuk S. Desmaze C. Plougastel B. Pulst S.M. Lenoir G. Bijlsma E. Fashold R. Dumanski J. de Jong P. Parry D. Eldrige R. Aurias A. Delattre O. Thomas G. Nature. 1993; 363: 515-521Crossref PubMed Scopus (1181) Google Scholar, 14Trofatter J.A. MacCollin M.M. Rutter J.L. Murrell J.R. Duyao M.P. Parry D.M. Eldridge R. Kley N. Menon A.G. Pulaski K. Haase V.H. Ambrose C.M. Munroe D.M. Bove C. Haines J.L. Martuza R.L. MacDonald M.E. Seizinger B.R. Short M.P. Buckler A.J. Gusella J.F. Cell. 1993; 72: 791-800Abstract Full Text PDF PubMed Scopus (1088) Google Scholar). It is now widely accepted that ERM proteins function as general cross-linkers between plasma membranes and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). The highly conserved NH2-terminal half of ERM proteins directly binds to the cytoplasmic domains of integral membrane proteins such as CD44, CD43, ICAM-1, and ICAM-2 (20Yonemura S. Nagafuchi A. Sato N. Tsukita S. J. Cell Biol. 1993; 120: 437-449Crossref PubMed Scopus (131) Google Scholar, 21Tsukita S. Oishi K. Sato N. Sagara J. Kawai A. Tsukita S. J. Cell Biol. 1994; 126: 391-401Crossref PubMed Scopus (677) Google Scholar, 22Helander T.S. Carpén O. Turunen O. Kovanen P.E. Vaheri A. Timonen T. Nature. 1996; 382: 265-268Crossref PubMed Scopus (200) Google Scholar, 23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 24Yonemura S. Hirao M. Doi Y. Takahashi N. Kondo T. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 885-895Crossref PubMed Scopus (503) Google Scholar). On the other hand, ERM proteins directly interact with actin filaments (25Turunen O. Wahlström T. Vaheri A. J. Cell Biol. 1994; 126: 1445-1453Crossref PubMed Scopus (346) Google Scholar, 26Pestonjamasp K. Amieva M.R. Strassel C.P. Nauseef W.M. Furthmayr H. Luna E.J. Mol. Biol. Cell. 1995; 6: 247-259Crossref PubMed Scopus (154) Google Scholar, 27Roy C. Martin M. Mangeat P. J. Biol. Chem. 1997; 272: 20088-20095Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 28Martin M. Roy C. Montcourrier P. Sahuquet A. Mangeat P. Mol. Biol. Cell. 1997; 8: 1543-1557Crossref PubMed Scopus (55) Google Scholar). The co-existence of plasma membrane- and actin filament-binding domains in individual molecules may allow ERM proteins to function as plasma membrane/actin filament cross-linkers. Furthermore, ERM proteins are also thought to be involved in plasma membrane/actin filament cross-linkage through hetero- and/or homo-dimerization (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 32Magendantz M. Henry M.D. Lander A. Solomon F. J. Biol. Chem. 1995; 270: 25324-25327Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) and through binding to EBP (ERM-binding phosphoprotein) 50/NHE-RF (regulatory cofactor of Na+-H+ exchanger) (33Reczek D. Berryman M. Bretscher A. J. Cell Biol. 1997; 139: 169-179Crossref PubMed Scopus (516) Google Scholar, 34Weinman E.J. Steplock D. Wang Y. Shenolikar S. J. Clin. Invest. 1995; 95: 2143-2149Crossref PubMed Scopus (310) Google Scholar). There is accumulating evidence that the cross-linking activity of ERM proteins is regulated by the Rho-dependent signaling pathway through binding to Rho-GDP dissociation inhibitor and/or Rho-dependent phosphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). One of the important questions regarding ERM proteins that have not yet been addressed is the extent to which ezrin, radixin, and moesin are functionally redundant. Targeted disruption of ERM protein genes would be one of the most direct ways to approach this issue. Among the ERM proteins, we expected moesin to be rather functionally unique, partly because this molecule lacks the polyproline stretch found in both ezrin and radixin and partly because only moesin is not tyrosine phosphorylated by the epidermal growth factor receptor (39Franck Z. Gary R. Bretscher A. J. Cell Sci. 1993; 105: 219-231Crossref PubMed Google Scholar). Therefore, to address the redundancy problem in ERM proteins we generated mice with a targeted null mutation of the moesin gene located on the X chromosome. DISCUSSIONERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar).To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar).The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar).Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level.In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. ERM (ezrin/radixin/moesin) proteins have been implicated as general cross-linkers between the plasma membrane and actin filaments (for reviews see Refs. 15Arpin M. Algrain M. Louvard D. Curr. Opin. Cell Biol. 1994; 6: 136-141Crossref PubMed Scopus (162) Google Scholar, 16Bretscher A. Reczek D. Berryman M. J. Cell Sci. 1997; 110: 3011-3018Crossref PubMed Google Scholar, 17Tsukita S. Yonemura S. Tsukita S. Trends. Biochem. Sci. 1997; 22: 53-58Abstract Full Text PDF PubMed Scopus (274) Google Scholar, 18Tsukita S. Yonemura S. Tsukita S. Curr. Opin. Cell Biol. 1997; 9: 70-75Crossref PubMed Scopus (308) Google Scholar, 19Vaheri A. Carpen O. Heiska L. Helander T.S. Jaaskelainen J. Majander-Nordenswan P. Sainio M. Timonen T. Turunen O. Curr. Opin. Cell Biol. 1997; 9: 659-666Crossref PubMed Scopus (161) Google Scholar). In this study, we generated male and female mice hemi- and homozygous, respectively, for a null mutation in the moesin gene located on the X chromosome. Surprisingly, the mutant mice exhibited no obvious abnormalities in appearance or fertility, and a systemic histological scan of mutant tissues revealed no abnormalities. Our results clearly demonstrated that moesin is not required for normal mouse development or for survival in the laboratory environment. This is surprising in view of the degree of conservation of the moesin gene, for example, the occurrence of a moesin gene inDrosophila (55Edwards K.A. Montague R.A. Shepard S. Edgar B.A. Erikson R.L. Kiehart D.P. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4589-4593Crossref PubMed Scopus (59) Google Scholar, 56McCartney B.M. Fehon R.G. J. Cell Biol. 1996; 133: 843-852Crossref PubMed Scopus (129) Google Scholar) and the tissue-specific regulated expression of this gene (57Amieva M.R. Wilgenbun K.K. Furthmayr H. Exp. Cell Res. 1994; 210: 140-144Crossref PubMed Scopus (61) Google Scholar, 58Berryman M. Franck Z. Bretscher A. J. Cell Sci. 1993; 105: 1025-1043Crossref PubMed Google Scholar, 59Schwartz-Albiez R. Merling A. Spring H. Moller P. Koretz K. Eur. J. Cell Biol. 1995; 67: 189-198PubMed Google Scholar). To date immunofluorescence microscopy and immunoblotting analyses have revealed that the ratio of the levels of ezrin, radixin, and moesin expression in individual cells varies between different tissues in wild-type mice. Furthermore, ezrin, radixin, and moesin are not always colocalized. From these in situ observations in wild-type mice, ezrin, radixin, and moesin have been suggested to have specific functions. However, experiments in vitro or at the cellular level have not clearly identified differences in function between these molecules. When the expression of any one or two ERM proteins was selectively suppressed by antisense oligonucleotides, no phenotypic changes were detected, and cell-cell/cell-matrix adhesion and microvillar formation were affected only when expression of all family members was suppressed (40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar). Furthermore, the NH2-terminal halves of all ERM proteins directly bound to the cytoplasmic domains of CD44, Rho-GDP dissociation inhibitor, and PIP2 (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar) and formed both homo- and heterodimers (29Gary R. Bretscher A. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 10846-10850Crossref PubMed Scopus (93) Google Scholar, 30Gary R. Bretscher A. Mol. Biol. Cell. 1995; 6: 1061-1075Crossref PubMed Scopus (373) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar). The present results favor the notion that ERM proteins are functionally redundant also at the whole body level. Interestingly, in moesin-deficient mice as well as isolated moesin-deficient cells, targeted disruption of the moesin gene did not induce compensatory up-regulation of the other members of the ERM family. In any of the tissues examined in mutant mice, no changes were detected in the expression levels or subcellular distributions of ezrin or radixin. More importantly, in isolated moesin-deficient cells such as platelets and mast cells, in which moesin was predominantly expressed in wild-type cells, moesin completely disappeared, leaving relatively small amounts of ezrin and radixin. The aggregation activity of moesin-deficient platelets and the microvillar formation of moesin-deficient mast cells were not affected. Considering that ERM proteins were thought to be directly involved in platelet aggregation (54Nakamura F. Amieva M.R. Furthmayr H. J. Biol. Chem. 1996; 270: 31377-31385Abstract Full Text Full Text PDF Scopus (184) Google Scholar) and microvillar formation (4Gould K.L. Cooper J.A. Bretscher A. Hunter T. J. Cell Biol. 1986; 102: 660-669Crossref PubMed Scopus (109) Google Scholar, 31Berryman M. Gary R. Bretscher A. J. Cell Biol. 1995; 131: 1231-1242Crossref PubMed Scopus (177) Google Scholar, 40Takeuchi K. Sato N. Kasahara H. Funayama N. Nagafuchi A. Yonemura S. Tsukita S. Tsukita S. J. Cell Biol. 1994; 125: 1371-1384Crossref PubMed Scopus (317) Google Scholar, 60Bretscher A. Curr. Opin. Cell Biol. 1993; 5: 653-660Crossref PubMed Scopus (48) Google Scholar, 61Amieva M.R. Furthmayr H. Exp. Cell Res. 1995; 219: 180-196Crossref PubMed Scopus (132) Google Scholar), we concluded that only a small fraction of total ERM proteins in wild-type platelets and mast cells are sufficient for their physiological functions. Similar observations, i.e. no phenotypic changes in knockout mice without up-regulation of other family members, has been reported in various systems. For example, mice devoid of components of intermediate-sized filaments such as vimentin and glial fibrillary acidic protein developed normally without compensatory expression of other intermediate filament components (62Colucci-Guyon E. Porter M.M. Dunia I. Paulin D. Pournin S. Babinet C. Cell. 1994; 79: 679-694Abstract Full Text PDF PubMed Scopus (487) Google Scholar, 63Gomi H. Yokoyama T. Fujimoto K. Ikeda T. Katoh A. Itoh T. Itohara S. Neuron. 1995; 14: 29-41Abstract Full Text PDF PubMed Scopus (229) Google Scholar). Another issue that we should discuss here is the function of moesin in intracellular signaling. We proposed that the cross-linking activities of ERM proteins were regulated by the Rho-dependent signaling pathway through direct binding to Rho-GDP dissociation inhibitor and/or through Rho-dependent posphorylation (23Hirao M. Sato N. Kondo T. Yonemura S. Monden M. Sasaki T. Takai Y. Tsukita S. Tsukita S. J. Cell Biol. 1996; 135: 37-51Crossref PubMed Scopus (508) Google Scholar, 35Takahashi K. Sasaki T. Mammoto A. Takaishi K. Kameyama T. Tsukita S. Tsukita S. Takai Y. J. Biol. Chem. 1997; 272: 23371-23375Abstract Full Text Full Text PDF PubMed Scopus (364) Google Scholar, 36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar, 37Matsui T. Maeda M. Doi Y. Yonemura S. Amano M. Kaibuchi K. Tsukita S. Tsukita S. J. Cell Biol. 1998; 140: 647-657Crossref PubMed Scopus (724) Google Scholar, 38Shaw R.J. Henry M. Solomon F. Jacks T. Mol. Biol. Cell. 1998; 9: 403-419Crossref PubMed Scopus (159) Google Scholar). Ezrin and radixin bound to Rho-GDP dissociation inhibitor with similar binding constants to moesin and were phosphorylated by Rho kinase with similar efficiency to moesin in vitro. Mackay et al. (36Mackay D.J.G. Esch F. Furthmayr H. Hall A. J. Cell Biol. 1997; 138: 927-938Crossref PubMed Scopus (266) Google Scholar) found that moesin was required for the Rho-dependent formation of stress fibers and focal contacts in permeabilized Swiss 3T3 cells. Also in this case, moesin was able to be replaced by ezrin and radixin. From the present results, we concluded that the functions of ERM proteins in the Rho-dependent signaling pathway are redundant also at the whole body level. In conclusion, the present observations were consistent with the notion that ERM proteins are functionally redundant. The possibility cannot be excluded that a more distantly related protein to moesin in the band 4.1 superfamily functionally compensates for the lack of moesin. Further generation of mutant mice lacking ERM proteins, both singly and in combination, will lead to a better understanding of the physiological relevance of the occurrence of these three closely related proteins. We thank Dr. S. Nishikawa (Department of Molecular Genetics, Kyoto University) for helpful discussions. We thank Dr. T. Murata and Dr. F. Ushikubi (Department of Cell Pharmacology, Kyoto University) for technical advice regarding platelet aggregation assay. Y. Doi thanks Dr. Y. Matsuzawa (Second Department of Internal Medicine, Osaka University) for providing him with the opportunity for this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助nikki采纳,获得20
2秒前
5秒前
曾经如是完成签到,获得积分10
5秒前
jimmy完成签到,获得积分10
5秒前
7秒前
李梦如完成签到,获得积分20
7秒前
9秒前
舒适的一凤完成签到 ,获得积分10
9秒前
Orange应助何何何何何采纳,获得10
10秒前
10秒前
10秒前
希望天下0贩的0应助诺一44采纳,获得10
10秒前
10秒前
12秒前
jimmy发布了新的文献求助10
13秒前
陈梅红完成签到 ,获得积分10
14秒前
momo123完成签到 ,获得积分10
14秒前
15秒前
梨小7完成签到,获得积分10
16秒前
赘婿应助早晚炸了学校采纳,获得10
17秒前
17秒前
18秒前
张张完成签到,获得积分10
19秒前
Adzuki0812发布了新的文献求助30
20秒前
言论完成签到,获得积分10
22秒前
23秒前
24秒前
爱笑小笼包完成签到,获得积分10
24秒前
GaoChenxi完成签到 ,获得积分10
25秒前
李健的小迷弟应助张之静采纳,获得10
26秒前
FashionBoy应助吉他平方采纳,获得10
27秒前
27秒前
28秒前
CrazyLion完成签到,获得积分10
29秒前
科目三应助李梦如采纳,获得10
29秒前
米饭多加水完成签到,获得积分10
29秒前
30秒前
31秒前
nikki完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744