Detailed characteristics of tetramethyl ammonium hydroxide (TMAH, (CH3)4NOH) as silicon anisotropic etching solutions with various concentrations from 5 to 40 wt.% and temperatures from 60 to 90 °C have been studied. The etch rates of (100) and (110) crystal planes decrease with increasing concentration. The etched (100) planes are covered by pyramidal hillocks below 15 wt.%, but very smooth surfaces are obtained above 22 wt.%. Etch rates of 1.0 μ/min for the (100) plane and 1.4 μ/min for the (110) plane at 90 °C are obtained using a 22 wt.% solution. The etch-rate ratio of (111)/(100) varies from 0.02 to 0.08. The etch rate of thermally oxidized SiO2 is almost four orders of magnitude lower than that for (100) and (110) planes. The etch rates of aluminium are reduced by dissolving silicon in TMAH solution. Etch-stop techniques using a heavily boron-doped layer or p—n junction prove to be applicable to TMAH solutions.