肌酸
胆碱
内科学
医学
内分泌学
队列
后扣带
谷氨酸受体
代谢物
认知
精神科
受体
作者
Stefan Gazdzinski,Rachel Millin,Lana Kaiser,Timothy C. Durazzo,Susanne G. Mueller,Michael W. Weiner,Dieter J. Meyerhoff
出处
期刊:Obesity
[Wiley]
日期:2010-04-01
卷期号:18 (4): 743-748
被引量:73
摘要
Recent studies associated excess body weight with brain structural alterations, poorer cognitive function, and lower prefrontal glucose metabolism. We found that higher BMI was related to lower concentrations of N-acetyl-aspartate (NAA, a marker of neuronal integrity) in a healthy middle-aged cohort, especially in frontal lobe. Here, we evaluated whether NAA was also associated with BMI in a healthy elderly cohort. We used 4 Tesla proton magnetic resonance spectroscopy (1H MRS) data from 23 healthy, cognitively normal elderly participants (69.4 ± 6.9 years; 12 females) and measured concentrations of NAA, glutamate (Glu, involved in cellular metabolism), choline-containing compounds (Cho, involved in membrane metabolism), and creatine (Cr, involved in high-energy metabolism) in anterior (ACC) and posterior cingulate cortices (PCC). After adjustment for age, greater BMI was related to lower NAA/Cr and NAA/Cho ratios (β < −0.56, P < 0.008) and lower Glu/Cr and Glu/Cho ratios (β < −0.46, P < 0.02) in ACC. These associations were not significant in PCC (β > −0.36, P > 0.09). The existence of an association between NAA and BMI in ACC but not in PCC is consistent with our previous study in healthy middle-aged individuals and with reports of lower frontal glucose metabolism in young healthy individuals with elevated BMI. Taken together, these results provide evidence that elevated BMI is associated with neuronal abnormalities mostly in frontal brain regions that subserve higher cognitive functions and impulse control. Future studies need to evaluate whether these metabolite abnormalities are involved in the development and maintenance of weight problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI