Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass

遥感 随机森林 环境科学 均方误差 高光谱成像 激光雷达 皮尔逊积矩相关系数 样本量测定 测距 相关系数 计算机科学 统计 数学 地理 人工智能 电信
作者
Fabian Ewald Fassnacht,Florian Härtig,Hooman Latifi,Christian Berger,Jaime Hernández,Patricio Corvalán,Barbara Koch
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:154: 102-114 被引量:305
标识
DOI:10.1016/j.rse.2014.07.028
摘要

Estimates of forest biomass are needed for various technical and scientific applications, ranging from carbon and bioenergy policies to sustainable forest management. As local measurements are costly, there is a great interest in obtaining reliable estimates over large areas from remote sensing data. Currently, such estimates are obtained with a variety of data sources, statistical methods and prediction standards, and there is no agreement on what are best practices for this task. To improve our understanding of how these different methods affect prediction quality, we first conducted a systematic review of the available literature to identify the most common sensor types and prediction methods. Based on the review, we identified sample size of the reference points on the ground, prediction method (stepwise linear regression, support vector machines, random forest, Gaussian processes and k-nearest neighbor), and sensor type as the main differences that could potentially affect predictive quality. We then compared those factors in two case study areas in Germany and Chile, for which airborne discrete return Light Detection And Ranging (LiDAR) and airborne hyperspectral as well as airborne discrete return LiDAR and spaceborne hyperspectral data were available. For each factor combination, we calculated Pearson's coefficient of correlation between observations and predictions (r2) and root mean squared error (RMSE) for bootstrapped estimates using k-fold cross-validation with a varying number of folds. Finally, Analysis of Variance (ANOVA) was used to quantify the influence of the factors on the predictive error of the biomass models. Our results confirm previous findings that predictor data (sensor) type is the most important factor for the accuracy of biomass estimates, with LiDAR being preferable to hyperspectral data. In contrast to some previous studies, complementing LiDAR with hyperspectral data did not improve predictive accuracy. Also the prediction method had a substantial effect on accuracy and was generally more important than the sample size. In most cases, random forest performed best and stepwise linear models worst, judging from r2 and RMSE under cross-validation. Additional results suggested that r2 may deliver unrealistically large values when the hold-out sample during the cross-validation is too small. In conclusion, our literature review revealed that different methods for biomass estimation are currently used, with no general agreement on best practices. In our case studies, we found substantial accuracy differences between those methods, with LiDAR data, in combination with a random forest algorithm and a large number of reference sample units on the ground yielding the lowest error for biomass predictions. The comparatively high importance of the statistical prediction method seems particularly relevant, as they suggest that choosing the appropriate statistical method may be more effective than obtaining additional field data for obtaining good biomass estimates. Considering the costs of improving accuracy of global and regional biomass estimates by ground measurements, it seems sensible to invest in further comparative studies, preferably with a wider range of sites and including also RADAR sensors, to establish robust best-practice recommendations for obtaining regional and global biomass estimates from remote-sensing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助万卓仁采纳,获得10
刚刚
SHAO应助海君采纳,获得10
1秒前
Owen应助牛牛牛采纳,获得10
1秒前
2秒前
思源应助dou采纳,获得10
2秒前
3秒前
cyzhou发布了新的文献求助10
3秒前
3秒前
上上签完成签到,获得积分10
4秒前
FashionBoy应助葡萄爱吃荔枝采纳,获得10
4秒前
小钱钱完成签到,获得积分10
5秒前
5秒前
依沫发布了新的文献求助10
6秒前
思维隋发布了新的文献求助10
9秒前
清脆的又蓝完成签到,获得积分10
10秒前
FashionBoy应助一天吃瓜25h采纳,获得10
10秒前
nowfitness完成签到,获得积分10
13秒前
梓辰完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
依然灬聆听完成签到,获得积分10
15秒前
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得30
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
WANGSONGLU发布了新的文献求助10
19秒前
斯文败类应助玉玉采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182