Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass

遥感 随机森林 环境科学 均方误差 高光谱成像 激光雷达 皮尔逊积矩相关系数 样本量测定 测距 相关系数 计算机科学 统计 数学 地理 人工智能 电信
作者
Fabian Ewald Fassnacht,Florian Härtig,Hooman Latifi,Christian Berger,Jaime Hernández,Patricio Corvalán,Barbara Koch
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:154: 102-114 被引量:305
标识
DOI:10.1016/j.rse.2014.07.028
摘要

Estimates of forest biomass are needed for various technical and scientific applications, ranging from carbon and bioenergy policies to sustainable forest management. As local measurements are costly, there is a great interest in obtaining reliable estimates over large areas from remote sensing data. Currently, such estimates are obtained with a variety of data sources, statistical methods and prediction standards, and there is no agreement on what are best practices for this task. To improve our understanding of how these different methods affect prediction quality, we first conducted a systematic review of the available literature to identify the most common sensor types and prediction methods. Based on the review, we identified sample size of the reference points on the ground, prediction method (stepwise linear regression, support vector machines, random forest, Gaussian processes and k-nearest neighbor), and sensor type as the main differences that could potentially affect predictive quality. We then compared those factors in two case study areas in Germany and Chile, for which airborne discrete return Light Detection And Ranging (LiDAR) and airborne hyperspectral as well as airborne discrete return LiDAR and spaceborne hyperspectral data were available. For each factor combination, we calculated Pearson's coefficient of correlation between observations and predictions (r2) and root mean squared error (RMSE) for bootstrapped estimates using k-fold cross-validation with a varying number of folds. Finally, Analysis of Variance (ANOVA) was used to quantify the influence of the factors on the predictive error of the biomass models. Our results confirm previous findings that predictor data (sensor) type is the most important factor for the accuracy of biomass estimates, with LiDAR being preferable to hyperspectral data. In contrast to some previous studies, complementing LiDAR with hyperspectral data did not improve predictive accuracy. Also the prediction method had a substantial effect on accuracy and was generally more important than the sample size. In most cases, random forest performed best and stepwise linear models worst, judging from r2 and RMSE under cross-validation. Additional results suggested that r2 may deliver unrealistically large values when the hold-out sample during the cross-validation is too small. In conclusion, our literature review revealed that different methods for biomass estimation are currently used, with no general agreement on best practices. In our case studies, we found substantial accuracy differences between those methods, with LiDAR data, in combination with a random forest algorithm and a large number of reference sample units on the ground yielding the lowest error for biomass predictions. The comparatively high importance of the statistical prediction method seems particularly relevant, as they suggest that choosing the appropriate statistical method may be more effective than obtaining additional field data for obtaining good biomass estimates. Considering the costs of improving accuracy of global and regional biomass estimates by ground measurements, it seems sensible to invest in further comparative studies, preferably with a wider range of sites and including also RADAR sensors, to establish robust best-practice recommendations for obtaining regional and global biomass estimates from remote-sensing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qqq发布了新的文献求助10
2秒前
3秒前
3秒前
弓亨发布了新的文献求助10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
Owen应助科研通管家采纳,获得50
5秒前
木又应助科研通管家采纳,获得20
5秒前
科目三应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
keke发布了新的文献求助10
7秒前
小蘑菇应助赵欣媛采纳,获得10
7秒前
lyx完成签到,获得积分10
8秒前
风华发布了新的文献求助10
9秒前
10秒前
lbyscu完成签到 ,获得积分10
10秒前
嘉言懿行完成签到,获得积分10
12秒前
魏凯源发布了新的文献求助10
12秒前
唐瑚芦完成签到 ,获得积分10
13秒前
菜菜完成签到 ,获得积分10
13秒前
大模型应助Georges-09采纳,获得10
14秒前
Mr.Wei发布了新的文献求助50
15秒前
雪白的翼完成签到 ,获得积分10
16秒前
李玉博完成签到 ,获得积分10
17秒前
gstaihn完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
顺利完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370