An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

材料科学 纳米片 静电学 纳米技术 聚合物 复合材料 复合数 各向异性 化学物理 化学 物理 光学 物理化学
作者
Mingjie Liu,Yasuhiro Ishida,Yasuo Ebina,Takayoshi Sasaki,Takaaki Hikima,Masaki Takata,Takuzo Aida
出处
期刊:Nature [Nature Portfolio]
卷期号:517 (7532): 68-72 被引量:462
标识
DOI:10.1038/nature14060
摘要

Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稀奇发布了新的文献求助10
刚刚
诚心以冬完成签到,获得积分10
1秒前
1秒前
Mendle发布了新的文献求助10
1秒前
科目三应助欧皇采纳,获得30
2秒前
笑点低涵雁完成签到,获得积分10
2秒前
wwwwrrrrr完成签到,获得积分10
2秒前
锦鲤完成签到 ,获得积分10
3秒前
虞访云发布了新的文献求助10
4秒前
昏睡的山柳完成签到 ,获得积分10
6秒前
乔乔那个孩子完成签到,获得积分10
7秒前
潺潺流水完成签到,获得积分10
7秒前
方断秋完成签到,获得积分0
7秒前
7秒前
加油搬砖完成签到,获得积分20
10秒前
彭于晏应助Amanda采纳,获得10
10秒前
能HJY发布了新的文献求助20
10秒前
帅气白梦完成签到 ,获得积分10
10秒前
xly完成签到,获得积分20
11秒前
demo完成签到,获得积分10
11秒前
小文殊完成签到 ,获得积分10
11秒前
13秒前
14秒前
舒适鹤轩发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
lemon应助科研通管家采纳,获得50
14秒前
热切菩萨应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
热切菩萨应助科研通管家采纳,获得10
15秒前
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
热切菩萨应助科研通管家采纳,获得10
15秒前
柯一一应助科研通管家采纳,获得10
15秒前
热切菩萨应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
family完成签到,获得积分10
16秒前
充电宝应助傲娇的厉采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382