Impact of manufacture technique on seawater desalination performance of thin-film composite polyamide-urethane reverse osmosis membranes and their spiral wound elements

薄膜复合膜 反渗透 聚酰胺 海水淡化 复合数 材料科学 化学工程 海水 渗透力 复合材料 正渗透 化学 工程类 地质学 海洋学 生物化学
作者
Meihong Liu,Shuili Yu,Ming Qi,Qiaoming Pan,Congjie Gao
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:348 (1-2): 268-276 被引量:19
标识
DOI:10.1016/j.memsci.2009.11.019
摘要

This paper aims to enhance the performance of the machine-made flat sheet thin-film composite (TFC) polyamide-urethane seawater reverse osmosis membranes and their spiral wound elements by modifying the manufacture technique. Continuous flat sheet TFC membranes were fabricated employing a reaction line through interfacial polymerization of m-phenylenediamine with 5-chloroformyloxyisophthaloyl chloride on porous polysulphone support membrane under optimum conditions, and spiral wound elements were manufactured from the resulting membrane sheets. In the process, a modified laminating method of one-side-contacting reaction and an additional procedure of thermo-sealing on the membrane sheet along the glue line were adopted for membrane fabrication and element manufacture, respectively. The effects of the modifications involved in the manufacture technique on the performance of the resulting membranes and elements, and the separation characteristics of the machine-made membranes were investigated in terms of permeate flux and salt rejection through permeation experiments with synthetic seawater. It was found that, the flat sheet TFC membranes and spiral wound elements manufactured adopting the modified technique showed significant improved seawater reverse osmosis performance. Additionally, the results of pilot test on a desalination plant indicated that the developed TFC membranes and spiral wound elements possessed good performance stability and were suitable for single-pass seawater desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情板凳发布了新的文献求助10
刚刚
NexusExplorer应助mochou采纳,获得10
1秒前
Candice完成签到,获得积分10
2秒前
2秒前
4秒前
飞翔的企鹅完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
Lucas应助zjq采纳,获得10
6秒前
chenyichi发布了新的文献求助10
7秒前
深情板凳完成签到,获得积分10
7秒前
ws发布了新的文献求助10
7秒前
10秒前
buzhidao完成签到 ,获得积分10
10秒前
小颖发布了新的文献求助10
10秒前
不怕困难完成签到,获得积分20
10秒前
FF完成签到,获得积分10
11秒前
初七123发布了新的文献求助10
12秒前
哈哈哈完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
不怕困难发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
勤劳冥发布了新的文献求助10
15秒前
15秒前
充电宝应助一三二五七采纳,获得10
16秒前
传奇3应助小颖采纳,获得10
17秒前
Katherine完成签到 ,获得积分10
17秒前
K珑发布了新的文献求助10
18秒前
18秒前
zjq发布了新的文献求助10
19秒前
20秒前
20秒前
缓慢的香芦完成签到,获得积分10
20秒前
jiasen完成签到,获得积分10
20秒前
lanting发布了新的文献求助10
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
胶体中的相变和自组装 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071410
求助须知:如何正确求助?哪些是违规求助? 2725386
关于积分的说明 7489586
捐赠科研通 2372678
什么是DOI,文献DOI怎么找? 1258184
科研通“疑难数据库(出版商)”最低求助积分说明 610221
版权声明 596916